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The symbols ZZ, IQ, IR and IC denote the sets of all integers, rational numbers, real numbers
and complex numbers respectively.

1. Exhibit a bijection of [0, 1] onto [0, 1). Could such a function be continuous?[5]

2. Suppose that X and Y are real vector spaces, X0 is a linear subspace of X and L0 :[8]
X0 → Y is linear. Use Zorn’s lemma to prove that there exists a linear map L : X → Y
such that

L0(x) = L(x) for all x ∈ X0.

3. (i) What does it mean to say that a topological space is normal?[12]

(ii) Prove that every compact Hausdorff space is normal.

(iii) State Urysohn’s lemma.

4. (i) Prove that L2[0, 1] ⊆ L1[0, 1] but L2(IR) 6⊆ L1(IR).[12]

(ii) Does there exists A > 0 such that

(∫ 1

0
|f(t)|2 dt

) 1
2

≤ A
∫ 1

0
|f(t)| dt

for all f ∈ L2[0, 1]?

(iii) Does there exist B > 0 such that

∫ 1

0
|f(t)| dt ≤ B

(∫ 1

0
|f(t)|2dt

) 1
2

for all f ∈ L2[0, 1]?

5. Prove that if f : IR→ IR and f is differentiable then f ′ is Borel measurable.[8]

6. Suppose that (X, d) is a metric space. A sequence {xn}∞n=0 in X is said to be a fast[10]
Cauchy sequence provided

∑
n≥1

d(xn, xn−1) is convergent.

(i) Prove that every Cauchy sequence in X has a fast Cauchy subsequence.

(ii) Prove that (X, d) is complete if and only if every fast Cauchy sequence in X is
convergent.
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7. Suppose that A and B are nonempty subsets of IR and C = {x+y : x ∈ A and y ∈ B}.[8]

(i) Prove that if either A or B is open then C is open.

(ii) Prove that if both A and B are compact then C is compact.

8. Suppose that w1 and w2 are nonzero complex numbers.[12]

(i) Prove that if f is an entire function such that

(∗) f(z) = f(z + w1) = f(z + w2) for all z ∈ IC

and if w1/w2 6∈ IQ then f is constant.

(ii) Prove that if w1/w2 ∈ IQ there exists a nonconstant entire function f satisfying
(*).

9. Let D = {z ∈ IC : |z| < 1}.[15]

By a region we mean a nonempty open connected subset of IC.

(i) What does it mean to say that a region is simply connected?

(ii) State the Riemann Mapping Theorem.

(iii) Find a conformal mapping, f , of W := {x+ iy ∈ IC : x > 0 and |y| < x} onto D.

(iv) Prove that IC is homeomorphic to D.

(v) Prove that if U and V are simply connected regions then U is homeomorphic to
V.

10. Find
∫ ∞
−∞

eiλt

(1 + t2)2
dt for 0 < λ ∈ IR.[10]
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