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Department of Pure Mathematics

Comprehensive Examlnatlo'n in Analysis

May, 1990

(10) 1. a) State Zorn's lemma.

b) Use Zorn's lemma to prove that any set can be well-
ordered.

c) Let A be a weli-ordered set. Prove that if f: A —» A s '

an order-preserving bijection, then f is the identity
map.

(10) 2.a) Show that a filter ¥ of a set X is a maximal (i.e. an
uitrafilter) if and only if for every subset A ¢ X either
Ae F or X\Ae 7. |

b) Define a compact topological space (using filters or
otherwise).

C) Prove Tychonoff's theorem, that a product of compact
topological spaces is compact.

(5) 3. Prove that a metric space is separable if and only if its
topology has a countable base, i.e. X is second
countable.

(15) 4. a) Suppose f: [a,b] — [0,00) |s a non- negatwe Lebesgue

measurable function and j f=0. Prove that f=0
aimost everywhere.
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(12)

b)

d)

Find a sequence of measurable functions fn: [0,1] — [0,e0)
1
such that fny1 <fn, fn — O pointwise, but | , fn % 0.

Explain why a measurable set A ¢ [0,1] such that,
m(A A J) =3 m(J) for every subinterval J < [0,1],
cannot exist. Here m is Lebesgue measure.

If fn: [0,1] — [0,0) is a sequence of measurabie

1
functions such that 'Io fn = 0, does fn = O almost
everywhere on [0,1]?7

Let f: [0,1 - R be the Cantor ternary function.
1

Caiculate j f.
0

5. (a) Let g,:[a,b] = [0,»c) be a sequence of continuous

(b)

functions, which decreases pointwise to 0,

i.e. Vxe [ab] g,,1(x) Sg,(x) and g,(x) >0 as n - .

Prove that g, - 0 uniformly.

Let p,:[0,1] - R be the sequence of polynomials
defined recursively for each x in [0,1] by p4(x) =0,

Posi®) = Pplx) + 3 (x — PA(X)).

(i) Prove inductively that for all n and x, p,(x) < Vx.
Hint: Consider Vx - p,4(x).

(ii) Explain why p, is an increasing sequence of
polynomials.

(iii) Why does n"_ﬂ p.(x) = f(x) exist? Find f(x).

(iv) Prove that p, — f uniformly.
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(14) 6. a)

b)

d)

() 7. a)

b)

(8) 8.

Prove that every continuous function f. [a,b] - R
is the uniform limit of a sequence of step functions.

Recall that a step function takes only finitely many
values at a finite number of intervals.
Let f: [a b] - R be continuous. Prove that

Itm j f(x)cos nx dx = 0.

State the Stone-Weierstrass theorem for the case of
complex valued functions defined on a compact set.
Suppose f: [-n ,x] - R is continous, f(-x) =f(x ) and for
all nin 2z, | ’; f(x)einxdx = 0. Prove f = 0.

Let U be an open set in the complex plane € and pe U.

Let f: U\{p} — C be analytic. Define what it means to

say that p is a removable singularity of f, a pole of f,
an essential singularity of f.

Let f be analytic on the punctured disk {z : 0 < |z| < 2}.
Suppose that [, . zMf(z)dz = 0 for n=0,12,.... What

type of singularity does f have at 07 Explam

0o in X
S ax.

Using the method of residues compute j
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(10) 9. a) State the maximum modulus principle.

b)

Prove Schwarz's lemma. Namely, if f is analytic in the
disk D={z:|z| £1}, f(0) =0, and |f(z)) <1 for ze D,
then |f(z)] < |z} for ze D. Also, if [f(z0)| = |zo| for some
non-zero point zg, then f(z) = Az for some A on the
unit circle.

Describe all the conformal equivalences f: D — D,
(i.,e. f is an analytic bijection with analytic inverse)
such that f(0) = O.

10) 10. a) Prove that the unitdisk D={ze C :|z|] <1} is

by

c)

homeomorphic to the plane C.

Prove that D is not conformally equivalent to G.

Z

Under the conformal mapping given by w = ===

determine the images of the half-plane {z : Re(z) 2 0},
and of the vertical strip {z : 0 < Re(z) < 1}.



