Course subject: Quantum Info & Computation (QIC)

For more detailed course information, click on a course title below.

Quantum Info & Computation (QIC) 710 Quantum Information Processing (0.50) LEC

Course ID: 011589
Review of basics of quantum information and computational complexity; Simple quantum algorithms; Quantum Fourier transform and Shor factoring algorithm: Amplitude amplification, Grover search algorithm and its optimality; Completely positive trace-preserving maps and Kraus representation; Non-locality and communication complexity; Physical realizations of quantum computation: requirements and examples; Quantum error-correction, including CSS codes, and elements of fault-tolerant computation; Quantum cryptography; Security proofs of quantum key distribution protocols; Quantum proof systems. Familiarity with theoretical computer science or quantum mechanics will also be an asset, though most students will not be familiar with both.

Quantum Info & Computation (QIC) 750 Quantum Information Processing Devices (0.50) LEC

Course ID: 015281
This course introduces the fundamental concepts and the most recent achievements in physical realization of quantum information devices and systems in three platforms; Nuclear Magnetic Resonance (NMR), quantum photonics, and superconducting electric circuits.

Quantum Info & Computation (QIC) 820 Theory of Quantum Information (0.50) LEC

Course ID: 000711
Fundamentals of quantum information theory including states, measurements, operations, and their representations as matrices; measures of distance between quantum states and operations; quantum Shannon theory including von Neumann entropy, quantum noiseless coding, strong subadditivity of von Neuman entropy, Holevo's Theorem, and capabilities of quantum channels; theory of entanglement including measures of entanglement, entanglement transformation, and classifications of mixed-state entanglement; other topics in quantum information as time permits.

Quantum Info & Computation (QIC) 823 Quantum Algorithms (0.50) LEC

Course ID: 013823
An investigation of algorithms that allow quantum computers to solve problems faster than classical computers. The quantum circuit model, Quantum Fourier transform, phase estimation, computing discrete logarithms, period finding, and quantum algorithms for number fields. The hidden subgroup framework and the non-Abelian hidden subgroup problem. Quantum search, amplitude amplification, and quantum walk algorithms. Limitations on the power of quantum computers. Selected current topics in quantum algorithms.

Quantum Info & Computation (QIC) 845 Open Quantum Systems (0.50) LEC

Course ID: 012567
Review of the axioms of quantum theory and derivation of generalized axioms by considering states, transformations, and measurements in an extended Hilbert space. Master equations and the Markov approximation. Standard models of system-environment interactions and the phenomenology of decoherence. Introduction to quantum control with applications in NMR, quantum optics, and quantum computing.

Quantum Info & Computation (QIC) 860 Laboratory on Control of Quantum Technology (0.50) LAB

Course ID: 016232
Experiments to control and characterize quantum systems.

Quantum Info & Computation (QIC) 861 Laboratory on Photonic Quantum Technology (0.50) LAB

Course ID: 016249
Selected advanced experiments in photonics-based quantum technology.

Quantum Info & Computation (QIC) 862 Laboratory on Low Temperature Quantum Technology and Nanofabrication (0.50) LAB

Course ID: 016250
Methods in low temperature physics as applied to quantum technology and an introduction to fabrication techniques.

Quantum Info & Computation (QIC) 863 Independent Project in Quantum Technology (0.50) PRJ

Course ID: 016251
A research project in any area of Quantum Technology approved by the course co-ordinator(s). The student is required to present a summary of the project orally and to submit a written report.

Quantum Info & Computation (QIC) 880 Nanoelectronics for Quantum Information Processing (0.50) LEC

Course ID: 013788
Electrodynamics of superconductors, BCS theory and tunnel junctions, the Josephson effect, flux and fluxoid quantization, quantization of electric circuits, the basic types of superconducting qubits, decoherence in the solid state, circuit quantum electrodynamics, readout of nanoscale qubits, fabrication of qubit devices, measurement techniques.

Quantum Info & Computation (QIC) 885 Quantum Electronics and Photonics (0.50) LEC

Course ID: 015282
The course is introductory and emphasizes the fundamental concepts and engineering applications without a previous exposure to quantum mechanics. Examples and problems are designed to address the applications of the course contents to real problems in electronic, optoelectronic, photonic and superconductive devices.

Quantum Info & Computation (QIC) 890 Topics in Quantum Information (0.50) LEC

Course ID: 013789
Quantum Information topics course.

Quantum Info & Computation (QIC) 891 Topics in Quantum Information (0.25) LEC

Course ID: 013920
Quantum Information topics courses.

Quantum Info & Computation (QIC) 895 Topics in Quantum Information (0.50) RDG

Course ID: 013790
Quantum Information topics course.