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Abstract—This paper studies spectrum sharing for providing
better quality of experience (QoE) in 5G networks, which are
characterized by multi-dimensional heterogeneity in terms of
spectrum, cells, and user requirements. Specifically, spectrum
access, power allocation, and user scheduling are jointly in-
vestigated and an optimization problem is formulated with the
objective of maximizing the users’ satisfaction across the network.
In order to reduce the complexity and overhead, decentralized
solutions with local information are required. To this end, we
employ game-theoretic approach and interference graph to solve
the problem. The proposed game is proved to have at least one
Nash Equilibrium (NE), corresponding to either the globally or
locally optimal solution to the original optimization problem.
A concurrent best-response iterative (CBSI) algorithm is first
devised to find the solution, which can converge to an NE,
but may not be globally optimal. Therefore, a spatial adaptive
play iterative (SAPI) learning algorithm is further proposed to
search the global optimum. Theoretical analysis demonstrates
that the SAPI algorithm can guarantee to find the globally
optimal solution with an arbitrary large probability, when the
learning step is set to be sufficiently large. Simulation results are
provided to validate the performance of the proposed algorithms.

Index Terms—5G network, next generation wireless network,
quality of experience, spectrum sharing, small cell networks,
spectrum access, user scheduling, power allocation, game theory

I. INTRODUCTION

Mobile traffic is predicted to increase 1000 times over the
next decade, due to the proliferation of connected devices.
For instance, the number of connected devices will reach 50
billions in 2020, including smart phones, connected vehicles,
and Internet of Things (IoT). In addition to such a 1000x
data challenge, a wide range of applications will emerge
with different service requirements, such as augmented reality,
e-health, and e-banking [1]. Consequently, next generation
(5G) wireless network has to improve the network capacity
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significantly to support massive mobile traffic, and meanwhile
satisfy distinct service requirements from various applications.

5G network needs to boost the capacity significantly to
accommodate the mobile traffic surge and diverse services.
Firstly, more spectrum is required. As the licensed spectrum
is quite limited, cellular networks are now expanding to utilize
the unlicensed bands (e.g., LTE-Unlicensed or LTE-U), such
as 5GHz and 60GHz [2]. Excessive efforts from both industry
and academia have been made to enable LTE to operation
in 5GHz bands [3]-[5]. Besides, the under-utilized spectrum
from other systems such as TV white space (TVWS) can be
harvested and reused in cellular systems to increase network
capacity opportunistically, through advanced cognitive radio
technologies [6]. Then, the network will deal with a het-
erogenous spectrum pool in terms of availability, bandwidth,
etc. Secondly, spatial spectrum reuse should be effectively
improved across the network by deploying diverse small base
stations (SBSs) [7]-[10]. However, densely deployed SBSs can
suffer from severe inter-cell interference, which will degrade
both the network capacity and user experience. To effectively
improve the network capacity and satisfy users’ requirements,
efficient spectrum sharing among cells plays a critical role.
However, spectrum sharing in 5G networks mainly faces the
following challenges: i) since different cells have different
traffic loads with diverse applications, spectrum sharing should
satisfy the differentiated quality of service (QoS) requirements
with heterogeneous and dynamic resources; and ii) inter-
cell spectrum sharing and intra-cell user scheduling should
be jointly optimized, which are also coupled with power
allocation. Existing works on spectrum sharing are mostly
based on central optimization which usually incurs extremely
high complexity, or only provide suboptimal solutions. In ad-
dition, the differentiated-QoS requirements and heterogeneity
of spectrum are seldom considered [11]-[13].

In this paper, we study spectrum sharing in 5G networks
for efficient service provisioning, where different types of
SBSs are deployed to exploit a heterogenous spectrum pool
consisting of licensed and harvested spectrums. To efficiently
improve users’ quality of experience (QoE) [14], spectrum
access, power allocation, and user scheduling are jointly
investigated. Specifically, we consider that users have diverse
service requirements in terms of throughput. An optimization
problem is formulated, with the objective of maximizing the
users’ satisfaction degree across the network. To solve the
problem, we employ a game-theoretic approach and interfer-
ence graph. The utility function of each player (i.e., SBS)
and the associated strategy set are carefully designed. Then,
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we prove that the proposed game is a potential game which
has at least one Nash Equilibrium (NE), corresponding to the
globally or locally optimal solution to the original optimization
problem. To find the NE, we first propose a concurrent best-
response iterative (CBSI) algorithm. Since the NE obtained
might be locally optimal, a spatial adaptive play iterative
(SAPI) learning algorithm is proposed to search the global
optimum. Through theoretical analysis, the SAPI algorithm
can guarantee to reach the global optimal solution with an
arbitrary large probability, when the learning step is set to
be sufficiently large. Extensive simulations are conducted for
performance evaluation, which demonstrate the efficiency and
optimality of the proposed algorithms.

In a nutshell, the contributions of this work can be summa-
rized as follows:

« A joint optimization framework of spectrum access, user
scheduling, and power allocation are formulated, with
objective of maximizing the satisfaction of users in the
network.

o A local interaction game is formulated and proved to have
NE, corresponding to either the local or global optimum
of the original optimization problem.

o Two algorithms are devised to converge to NE, either
being the locally or globally optimal solution. The SAP
learning based iterative algorithm is proved to converge
to the globally optimal solution with an arbitrary large
probability, given a large learning step.

The remainder of the paper is organized as follows. Related
works are presented in Section II. The detailed description of
the system model and problem formulation are given in Sec-
tion III. The game model and proposed solutions are presented
in Section IV and Section V, respectively. Simulation results
are provided in Section VI, followed by concluding remarks
in Section VIL

II. RELATED WORKS

To accommodate the massive mobile data, the network
capacity of 5G should be increased accordingly. The network
capacity can be approximately expressed as follows:

C=>"% Wjlogy(1+Tiy), (1)
i g

where Y;; is the signal-to-interference-plus-noise ratio
(SINR) in cell 7 on channel j and W; is the bandwidth for
channel j. From this expression, we can improve network
capacity from the following aspects:

e add more spectrum resources through spectrum harvest-
ing or expanding the network in unlicensed bands;

o enhance spectrum efficiency (SINR improvement),
through advanced PHY/MAC layer techniques, such as
relaying, device-to-device (D2D) [15], [16], massive
MIMO [17];

« improve network densification through densely deploying
SBSs [18].

Since the gain obtained from spectrum efficiency improve-

ment is very limited due to the log function, significant efforts
are devoted to the other two aspects. In the aspect of spectrum

expansion, LTE-Unlicensed (LTE-U) and different spectrum
harvesting techniques (e.g., spectrum sensing [19], TVWS
database, spectrum leasing) can bring more spectrum to the
network. However, the key is how to share those spectrum
across the network. With SBSs to fully reuse spectrum, the
main limiting factor for network capacity is intercell interfer-
ence. Therefore, in the following, we will mainly present the
related work on each aspect, particularly on spectrum sharing
and interference mitigation in small cell networks.

When different spectrum bands are available, spectrum
sharing is important to network capacity [20] and different
schemes are proposed for efficient sharing spectrum among
different network entities. In [21], the spectrum resources are
simply shared among users with equal probability. In [11], the
spectrum sharing strategy is proposed based on multi-channel
ALOHA protocol and the theory of potential games. In [22],
the authors study spectrum sharing among multiple cellular
operators in the unlicensed spectrum using Stackelberg game.
In [23], spectrum sharing is studied using stable marriage
game, which aims to find the most stable pairings between
the users and spectrum bands. A congestion game approach
is proposed to allow users to autonomously select a spectrum
bands for access to maximize its own utility in [6], [24]. How-
ever, those approaches are mainly for dynamic spectrum access
and cannot be applied directly to 5G networks, considering the
heterogenous SBSs and users’ requirements.

With densely deployed SBSs, the main limiting factor for
network capacity is inter-cell interference, which has received
much attention recently. In order to mitigate interference
and improve network capacity, user scheduling and power
control are usually jointly studied. The centralized iterative
scheme is proposed to jointly optimize the user scheduling
and power allocation in the multicell networks [25]. However,
it is not suitable when SBSs are densely deployed, due to
the high complexity and the heavy overhead for information
exchange. To overcome this issue, clustering based approaches
are proposed [13], [26], where power control and channel
allocation are studied within each small cluster. However,
it is still difficult to decide the optimal cluster size and
the number of clusters. An algorithm combining Lagrangian
duality and dynamic programming is proposed in [12]. In [27],
joint channel and power allocation is decomposed into two
subgames and then solved accordingly. However, the obtained
solutions in [12], [27] are suboptimal.

To sum up, existing works either only obtain suboptimal
solution or incur high complexity due to the centralized opera-
tion. Moreover, most of them do not consider the heterogeneity
of spectrum and users’ requirements. Different from these
works, we aim to jointly optimize spectrum sharing, user
scheduling, and power allocation in a decentralized manner
based on local information, to improve user experience in 5G
networks. Furthermore, the heterogeneities of spectrum, cells
and user requirements are all considered.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model and problem formulation
are presented.
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Figure 1. Network architecture with heterogenous spectrum pool.

A. System Model

We consider a heterogenous network with different small
cell base stations (SBSs). The set of SBSs is denoted by
M = {1,2,..., M}, which are spatially distributed to serve
their own users in the respective coverage area. Let A/ denote
the user set, i.e., N'={1,2,..., N}. The users served by SBS
m is denoted by N, and {J,,,c r( Nm = N In this paper, we
mainly focus on downlink transmission from SBSs to users.
Users are considered to have certain rate requirements and
denote by R;mn the rate required by user n associated with
SBS m, which may vary for different users. The SBSs share a
heterogenous spectrum pool consisting of the licensed bands
and unlicensed bands'. SBSs can access the unlicensed bands
in an opportunistic fashion. Each band consists of a number
of channels. Let K be the band set, e.g., K = {1,2,..., K}.
Denote C;, for the channel set in band k, with size of Jj.
SBSs schedule their users to different channels for service
and the scheduled users from the same SBS access channels
orthogonally. Licensed channels are always available while
unlicensed channels are available with certain probabilities?.
Define the channel availability probability py, ; for channel ¢y, ;
to be available, where c; ; is the ith channel in band k. For
licensed channels, py ; = 1. The channels are with different
bandwidths, and denote by W, ; the bandwidth of channel ¢y, ;.
The average channel gain from SBS m to user n on channel
Ck,i is hfﬁfn

SBSs select a spectrum band and schedule users to different
channels in the selected band. Let n,’ﬁjn indicate whether or
not SBS m selects channel ¢y, ; to serve user n, i.e., nfnzn =1
when SBS m chooses channel ¢y, ; to serve user n. Then, the
SINR for user n can be given by

b PR, o
m,n Eje/\/l,j;émniyllpf’lh?,’:z + o2 )

where o2 is the noise power, while P,’fﬂ and Pj * are the

transmission power of SBS m and j for channel j in band
k, respectively. Assume that the SBSs apply equal power
allocation for all the channels in a selected band, to reduce the
computational complexity. The channel gain can be calculated

!Unlicensed bands correspond to the spectrum resources that are not as-
signed to the HetNet, such as spectrum around SGHz and spectrum harvested
from other systems.

2The availability probabilities can be obtained through spectrum sensing or
learning on other systems.

Table T
SUMMARY OF IMPORTANT SYMBOLS.
Symbol Definition
M The set of SBSs
K The set of spectrum bands
N The set of user
Nm The users served by SBS m
B The spectrum band selection vector for all SBSs
P The power selection vector for all SBSs
S The user scheduling vector for all SBSs
hf,{’n The channel gain for user n in SBS m on channel ¢ in band &
Tlf,;fn The SINR for user n in SBS m on channel 7 in band k
Rf,{ln The data rate for user n in SBS m on channel 7 in band k&
Rl . The required data rate for user n in SBS m
Dk,i Availability for channel ¢ in band &
Wi i Bandwidth for channel 7 in band k&
nfnfn Indicator for user n in SBS m to access channel 7 in band k
Zm The neighboring SBSs of SBS m
[ The potential function
Um The utility of SBS m
Qm The overall strategy for SBS m
Q.. The subset strategy of SBS m
M The set of SBSs selected for updating policy
as follows:
; S
horin = =7 3)
m,n

where ¢ represents the rayleigh fading, d,, , is the distance
between SBS m and user n, while p is the path loss exponent.

The expected transmission rate for user n in SBS m when
selecting channel ¢, ; can be expressed as follows:

R = i Wiilogy(1+TED ). )

Considering users have certain transmission rate require-
ment, the satisfaction degree is adopted as the performance
metric to measure user’s experience, which is similar to
the conception of quality of experience (QoE). Specifically,
when the transmission rate Rﬁjn is greater than Ry, . the
satisfaction of user n will increase slowly. When RF:? s
lower than Ry, ., the satisfaction will decrease dramatically.
To estimate the satisfaction, we define the following function,
similar to [28]:

m,n

R, . ) (&)
where « is the factor representing the steepness of the satis-
factory curve. The value of satisfaction ranges from O to 1.
Moreover, the marginal rate of the satisfactory improvement
is diminishing, following the law of the diminishing marginal
benefit in economics. Fig. 2 shows the degree of satisfaction
versus the transmission rate for the given the required rate of
4Mbps, under different values of «.

Fm,n =1- exp(—a

B. Problem Formulation

Define power selection vector P := {P,Ps,..., Py}
for all SBSs. For an SBS, it will equally allocate the se-
lected power to the selected channels. We consider that
the SBSs choose discrete power levels, similar to that in
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Figure 2. The satisfaction function with respect to transmission rate.

3GPP LTE standard [29]. Suppose that there exist L dif-
ferent power levels. The SBSs can choose the power level
from P := {u1Pmaxs #2Pmazs s 0L Pz}, Where pg <
2, ..., < pr = 1. Define the spectrum band selection vector
B := {Bi, Ba, ..., Barr }, where By, respects the band selection
of SBS m, ie., B,, € K and B,, = {k : nf,;fn = 1}.
Define user scheduling vector S := {S1,Ss, ..., Sar}, where
S, represents the user scheduling of SBS m over the selected
band and Sy, = {n : %, = 1,Vi € Ci}.

The objective is to maximize the network utility, which is
defined as the aggregate user satisfaction across the network.
It is a function of (B,P,S):

U(B,P.,S) = ZnemZnen, Dmon- (6)

To find the optimal solution, we can formulate the following
optimization problem:

(B*,P*,S*) = argmax U (B, P,S)

(7N
st. BeKPeP,SeS

Note that K, S, and IP are the band selection, power selection,
and user scheduling space for all SBSs.

The above problem is a combinatorial optimization problem
and is NP-hard to find the optimal solution [29].

IV. LOCAL INTERACTION GAME

To solve the above problem, we exploit a game theoretical
approach in this section. A local interaction game is proposed
and through analyzing the game, solutions are devised accord-

ingly.

A. Game Model

Since all SBSs share the same spectrum pool, there might be
inter-cell interference. Considering that the users are mainly
interfered by a small number of neighboring cells [30], we
adopt the interference graph to represent the potential inter-
ference relationship among SBSs. The interference graph is
a unidirectional graph G = (M, ¢), where M and & are the
vertex and edge set. M corresponds to the SBS set, while
& represents the potential mutual interference relationship
between two nodes. The interference graph only represents the
potential mutual interference relationship based on distance.
The actual interference also depends on whether the two SBSs
select the same channel or not. For instance, when the distance

SBS 3

SBS 6

SBS 2 SBS 7

Figure 3. Interference graph.

between two SBSs is greater than a predefined threshold?,
they have the potential interference when using the same
spectrum band. In the interference graph, nodes with edge
connected can interfere with each other’s transmission if using
the same channel. Denote by Z,,, := {i € M, (i,m) € £} the
neighboring SBSs set of SBS m. Fig. 3 shows an example of
interference graph. In this figure, Z4 = {1,3,5,7}.

We define a local interaction game @G =
{M,{Br, @Pr, @ S }nems {Untmem},  where M
is the player set, {B,, @ P, @S} is the strategy set for
player m, and U, is the utility function of player m. In our
case, the players are the SBSs and the utility function U,, is
defined as follows:

Um(vaQZm) =Tm+ Z Fj; (8

JEZm

where @, and Qg  are the strategies of SBS m and its
neighboring SBSs, while I',, is the aggregate user satisfaction
in SBS m when adopting the strategy ),, and Qz . Note
that the neighboring SBSs of SBS m are those who has
connection with SBS m in the interference graph. Specifically,
Qm = {Bm,Pmn,Sn}. From (8), the utility of player m
consists of two parts: its own user satisfaction and the ag-
gregate user satisfaction from its neighbors. By designing the
utility functions in such a way, we could obtain the maximum
network utility when each SBS aims to maximize its utility.
For each player, it aims to select the best strategy to maximize
its utility function.

Definition 1: A strategy profile Q) 4 =
(BY,Bs,....,By,Pf Py, ... Py, ST, 55, ..., Sh,) is
an Nash Equilibrium (NE) if and only if

Un (@7, QL) = U (Qm, QL) Ym € M, ©)

where Q™ are the strategies selected by all the other players
except m. NE means no one has the intention to change its
strategy since it cannot increase its utility unilaterally. Since
NE:s are the solutions to the game G, in the following, we will
analyze the game to obtain NEs.

B. Game Analysis

Theorem 1: The proposed game G has at least one pure
NE strategy.

3The selection of threshold can balance the complexity and performance.
For instance, a smaller threshold indicates more SBSs will be considered as
interference sources for a given BS, which is more accurate but with high
complexity.
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In what follows, we provide the proof for Theorem 1, based
on the theory of potential games. To this end, the definition
for a special type of game: exact potential game, is given first.

Theorem 2: A game is an exact potential game if there
exists a potential function ® which satisfies the following
condition:

Ui(si, s—i) — Ui(siy 5—;) = ®(s;, 5;) — ®(s4,5-;), (10)

where U; is the utility function of player ¢, while s; and s_;
are the strategy for player ¢ and other players, respectively.

For an exact potential game, if any player changes its
strategy, e.g., from s; to s}, the change in its own utility
equals to the change in the potential function. It is well known
that there exist at least one pure NE in exact potential games.
Therefore, in the following, we prove the proposed game G is
an exact potential game, similar to [29], [31].

Proof: Define the potential function ® as follows:

(I)(QWHQ—m) = Z Fm(QmaQ—m)' (11)
meM
Note that @, := {Sm, Cm, P}, which is the strategy set for

SBS m.
Since 'y, (Qm, Q_,,) = ' (@, Qz,, ), we have

‘I)(Qnu Q—m) =l (va sz) + Z Fj (Qma QZj)

JEZm
+ >

Fn (Q’na QZn )
n#EMNEZ,,

Considering that each player has three decision variables,
any change in band selection, transmission power, and user
scheduling will cause the change of its strategy set. Therefore,
we will investigate the effect in potential function and player’s
individual utility function when any change is made in the
strategy set. Suppose that an arbitrary player, e.g., SBS m,
changes its band selection decision from B,, to B!, . Then, the
change in potential function ®(Q,,,,Q_,,) is given by (12).

2(Q0: Q) — 2(Qm, Q)
= q)(B;’rw P’H’Lv Sm7 Q—m) - (P(B;n, Pm7 Sm, Q—'m,)
= Fm(B;uma Sm7QZm) - Fm(Bma Py S, sz)
+ Y [05(B,. P, Sm. B, . Pz,,Sz))

jeZIYL
- Fm(Bm7 Pm7 Sm7 BZJ',7PZJ‘ 9 SZJ' )]
+ Z FW(QTH QZ,I) - Z Fn(Qn7 QZW)
nEFmngZm n#EmMNEZ,,
(12)

The change in the individual utility is expressed as follows:

Um(Q;mem) - Um(meQfm)
= Fm(B;na Py S, sz) - Fm(Bnu Py S, sz)
+ Z [5(B},, P, Sm, B, ,Pz,,Sz))
JE€EZm
—Fm(Bm,Pm,Sm,BZj,,ng,ng)]
(13)
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When SBS m changes its band selection decision from B,,
to B/, the transmission rate for SBS n will not change, where
n # m,n ¢ Z,,. Therefore, from (12) and (13), the following
equation holds:

(P(B;n,Pm,Sm,Q,,,n) _q)(B;n7PmaSm7Q7m) (14)
= Um(B;naPma SmaQ—m) - Um(Bmv Pma vaQ—m)'

Due to the symmetry of B,, and P,,, when SBS m changes
its power selection decision from P,, to P} , the same result
can be obtained. Next, we will analyze the case when SBS
m changes its user scheduling strategy from S,, to S/ .
Given the spectrum band selection and power selection vector,
the change in user selection decision does not affect the
neighboring cells for downlink transmission. The reason is
that the transmission rate of a generic SBS does not depend
on the other SBSs’ user scheduling decision, when power and
channel selection are given. Therefore, when SBS m changes
its power selection decision from P, to P, , we have

(P(B’ma Pma S,:n, Q7m> - q)(Bm7Pma S’mefm)
= Fm(Cm; va S;n, Q—m) - Fm(Bm7 va Sma Q—m) (15)
- Um(B:nypnla San—m) - Um(BWH Pm; vaQ—m)

From above analysis, we can find that the change in potential
function is the same as the change in the SBS’s utility
function when the SBS unilaterally changes its strategy (e.g.,
By, P, Sy, for a generic SBS m). According to Definition
2, the game G is an exact potential game with the potential
function defined in (11). Therefore, the game G has at least
one pure NE strategy. Theorem 1 has been proved.

Theorem 3: The NE of the proposed game G can maximize
the aggregate user satisfaction locally or globally.
According to [32], the NE of potential game correspond to the
local or global maximizer of the associated potential function.
In our case, the potential function ® is the aggregate user
satisfaction. Therefore, Theorem 3 is proved. Note that the best
NE is the globally optimal solution to the original optimization
problem.

V. ITERATIVE ALGORITHMS TO FIND NES

According to Theorem 2, to maximize the objective, it is
necessary to devise efficient algorithms to find the NEs or even
the best NE. In this section, we first study the optimal user
scheduling given power allocation and band selection. Then,
by incorporating the obtained user scheduling strategy, we pro-
pose a concurrent best response iterative (CBSI) algorithm to
find an NE, which serves as an benchmark solution. Although
CBSI algorithm can help achieve the NE, the outcome might
be a locally optimal solution. Therefore, we propose a spatial
adaptive play iterative (SAPI) learning algorithm to find the
best NE, which globally maximizes the potential function, i.e.,
the aggregate user satisfaction.

A. User Scheduling

As aforementioned, the user scheduling in SBSs is indepen-
dent with other SBSs, given the power allocation and band
selection. Without loss of generality, we take a generic SBS
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Channels

Figure 4. Matching based user scheduling.

to study the user scheduling. Suppose the SBS has N users
to serve and the selected band has J channels to explore. The
SBS determines the optimal user scheduling, with the objective
of maximizing the aggregate user satisfaction. Specifically,
denote by I; ; the indicator which indicates whether user 4
is scheduled to channel j or not. Then, we have

1
I =
Ik

User scheduling is equivalent to determining all the indicators
I; j, where ¢ € {1,2,...,N} and j € {1,2,..., L}, which can
be formulated as follows:

N J
max Z Z I,‘J‘Fi(i, ])

i=1 j=1
sty I; <1,Vi=1,2,..,N
%

if user ¢ accesses channel j
. / (16)
otherwise.

)
dLy<1¥i=12..J

J

L; € {0,1},Vi € {1,2,...,N},Vj € {1,2,..., J}

Note that I';(¢,j) is the satisfaction degree for user i if
scheduled to channel j, which can be calculated by (4) and
3).

The above problem can be transformed into the maximum
weight bipartite matching problem, which can be solved in
polynomial time [33]. Fig. 4 shows the bipartite graph, where
the weight w; ; on each edge represents the user satisfaction
degree if the corresponding user ¢ accesses channel j (rep-
resented by vertices). Finding the optimal user scheduling is
equivalent to finding the maximum weight matching in Fig.
4.To this end, Hungarian algorithm [34] can be adopted, which
is a well known algorithm to find the matching to maximize
the sum of the weights in polynomial time. By doing so, the
best matching can be determined such that the aggregate user
satisfaction of the SBS is maximized.

B. Concurrent Best Response Iterative Algorithm

For a potential game with finite strategy sets, it possesses
the finite improvement property (FIP). With FIP, unilateral
improvement dynamics will converge to an NE in a finite
number of steps. Since the game G has finite strategy sets,
we can employ the basic best response technique to find the
NE strategy of the proposed game. Furthermore, considering
the characteristics of our optimization, i.e., multi-dimensional
strategies and interference graph, we propose CBSI algorithm
in the following. Define the subset of strategy Qm for SBS m,
Vm € M, where Q,, :=B,, ®P,, and Q,, = (B, Pp).

1) Inmitialization: Set the iteration counter ¢ := 0. Each
SBS, randomly selects a spectrum band, transmission
power level, and user scheduling policy, i.e., initialize
B, (t = 0),Py,(t = 0),S,(t = 0),Vm € M. Based
on the initial condition, each SBS calculates the user’s
satisfaction.

2) SBS selection: A set of non-neighboring SBSs M is
randomly selected, where these SBSs are not neighbors
of each other. Each SBS m in M calculates its utility
U, (t) using (8) through communication with neighbor-
ing nodes.

3) Best response: Given that the other SBSs keep
their strategies, each SBS m in M, calculates its
utility function over all the possible strategies, i.e.,
Um,i(Sm,Qmﬂ-,Q_m), A Qm,i S Qm and V m € M.
Then, SBS m in M, selects the best strategy such that
the utility function is maximized:

Q; = argmax Uy, ; (18)

4) Best user scheduling: Based on the new selected strat-
egy, SBS m in M and the corresponding neighboring
SBSs select the best user scheduling such that the
utility in (8) is maximized. Since the user scheduling
is independent among SBSs, given the power and band
selection vector, the best user selection can be performed
independently. Each selected SBS just applies Hungarian
algorithm to obtain the optimal user scheduling.

5) Stop: If the stopping criterion is satisfied (e.g., the
maximum number of iterations is reached), then stop;
otherwise increase the iteration counter ¢ by 1, and
reiterate from step 2.

C. Convergence and Optimality Analysis

The CBSI algorithm allows multiple non-interfering SBSs
to concurrently improve their utilities. According to the FIP
feature, after a finite number of iterations, the CBSI algorithm
can converge to a stable solution, i.e., an NE. As for the
optimality, according to Theorem 2, the solution obtained by
CBSI algorithm is at least locally optimal.

D. Spatial Adaptive Play Iterative Algorithm

Although CBSI algorithm can find NE of the game, the
solution might be locally optimal. In order to find the best
NE, we devise SAPI learning algorithm. The SAPI learning
algorithm adopts mixed strategy to search the best NE and will
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converge to the best NE with an arbitrarily large probability.
Its main idea is to iteratively update the mixed strategy to
maximize the potential function. For each player, its mixed
strategy is the probability mass function (p.m.f) over the
strategy set, i.e., pp,;(t), which denotes the probability that
SBS m choose i-th strategy at iteration ¢. Algorithm 1 presents
the detailed procedure with four main steps as follows.

1) Initialization: Set the iteration counter ¢ := 0. For
each SBS, the mixed strategy is initialized as a uniform
distribution, i.e., py(t = 0) = 1/A, where A is
the size of Q,,,¥m € M. Then, each SBS initializes
B, (t = 0), m( = 0),Sn(t = 0),Ym € M, and
calculates the user’s satisfaction.

2) SBS selection: A set of non-neighboring SBSs M is
randomly selected. Each SBS m in M calculates its
utility U, (¢) using (8) through communication with
neighboring nodes.

3) Exploration and mixed policy update: Given that the
other SBSs keep their strategies, SBS m in M, calculates
the utility function over all the possible strategies, i.e.,

mz(smanz;Q ) vaz S Q and Vm € M.
Update the mixed strategy as follows:
Um i

prna(t + 1) = = XP1Umai} (19)

EQm,ieQm exp{fUnm,i}’

where 3 is the learning parameter*, which is positive.
SBS m randomly selects its strategy according to the up-
dated mixed strategy. Based on the new selected strategy,
SBS m and the corresponding neighboring SBSs selects
the best user scheduling such that the utility in (8) is
maximized. Since given the power and band selection
vector, the user scheduling is independent among SBSs.
Therefore, the best user selection can be performed
independently. Each selected SBS just applies Hungarian
algorithm to obtain the optimal user scheduling.

4) Stop: If the stopping criterion is satisfied (e.g., the
maximum number of iterations is reached), then stop;
otherwise increase the iteration counter ¢ by 1, and
reiterate from step 2.

E. Convergence and Optimality Analysis

1) Convergence Analysis:
Theorem 4: SAPI algorithm can converge to a stationary
distribution (B, S,P) given by

exp{S®(B,P,S)}
Ypek pep exp{3P(B,P,S)}’

where user scheduling vector S can be determined, given B, P.

Proof: Given the band selection and power selection vec-
tors B and P, namely Q,,,¥m € M, user scheduling vector
S can be uniquely determined. Define Q := {Q,,,,Vm € M},
then S = f(Q). In the following analysis, we will mainly
focus on the strategy set Q. Denote the strategy adopted in
the ¢-th iteration Q(t) = {Q1(t), Q2(t), ..., Qar(t)}. Since
the strategy space is discrete and the future strategy does not

(20)

©(B,P,S) =

43 balances the tradeoff between exploration and exploitation.

Algorithm 1 SAPI algorithm
Require: M, T, N, «a, 3, h*,Vm € M,s € N.
Ensure: S*,C*, P*

1: (Initialization): Set mixed strategy pm i(t = 0) = 1/A, where
A=M-L,Ym € M and Vi, Qi € Q,,. Generate samples of
the strategy vector.

2: for t < 1to T do

3:  Randomly generate non-interfering SBSs set M

4:  Calculate utility according to (5)

5:  for BEach m € M do 3 B

6: Calculate  Unm,i(Sm; Qm,isQ ),V Qmi €
Q,, and Ym € M

7: Update mixed strategy: U

exp m,i

p'm,z(t + 1) = ZQm‘ie()m exp{ﬁUmyLv}

8: Generate samples of the strategy vector

9: Each SBS determines user scheduling strategy indepen-
dently

10:  end for

11:  Stop when maximum of iterations is reached

12: end for

13: return

depend on the past strategy selection given the current strategy,
Q(t) is a discrete time Markov process. Moreover, it is a
irreducible and aperiodic process. Thus, there exists an unique
stationary distribution for Q(t), which should satisfy the
balanced equations. To prove Theorem 3, we can justify that
the distribution given by (20) satisfies the balanced equations.
To this end, we first define two arbitrary states for the above
process, A and B, where A, B € Q. Then, we justify that
distribution in (20) satisfy: 7r( )p(B|A) = 7(B)p(A|B).
Suppose that state A is given by {Ql,Qg,. ,QM} Let
the set of randomly selected SBSs be M := {1,2,..., M|},
where [M]| is the number of elements of M. The associated
probability for selecting QIM\ is denoted by p. Define state B

as {Q’l, Q’Q, ey Q; ’Q;M\-s-l . QM} Then, the conditional
probability p(B|A) is

eXp{ﬁUl( ~;>QZi7f( ~;7QZi))}
I S o002 G0 0] @
iEM Q; p i 1y NZ; 1y NZ;
Based on that, we have
m(A)p(B|A)

= Aexp{S®(4, f(A

p(BJA) =

} H eXp{BU QmQZ 7f(Q 7QZ ))}
1€M

)+ 8 ] Ui

zEM

= Aexp{BP(A4, f(A sz7 (ngozi))}v

where A =

PP exp{ﬂ@(A FAN}

HlGM ZQ exp{,BU (Ql QZ f(Q1 QZ ) }
Slmllarly, we have

m(B)p(A|B)
= Aexp{8®(B, f(B

)+ 8 [ Ui(@i,Qz,, £(Qi,Qz))}-
1€M

Comparing state B with A, there are M elements changed.
Define A(i) to be the new state with changes up to the i-th
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Table IT
PARAMETERS USED IN THE SIMULATIONS
Parameters Value
Maximum transmission power 2 W
Power levels [2 48]
o? -90 dB
Path loss exponent g 3.5
Cell radius 200 m
Required throughput [1 1.5 2 2.5]Mbps
Learning parameter (3 [20 40 60]
Interference distance [350 450 550] m
o [0.8 1 1.2]

element in state A. Then, state B can be considered as A(|M]),
while state A = A(0). Then, we can have

(B, f(B)) - (4, f(A))
= {A(IM]), f(A(M]))} — D{A(0), F(A(0))}
'M'{<I>( A(7), f(A(9)) = @(AG = 1), f(A( = 1))}
Since the proposed game is an exact potential game, we have
s MI{R(AG), F(AW)) ~ B(AG — 1), F(AG - 1)}
= SIM{UL(AG), £(AG)) ~ U(AG - 1), f(AG - 1))} @
- U (QwQZ af(QiDQZi)) - Ui(Qia QZN f(Qia QZL))

The last equation holds because all the SBSs in M are
not neighboring nodes. Therefore, the stationary distribution
m(B,P,S) given in (20) satisfies the balanced equations. MW

(22)

2) Optimality Analysis:

Theorem 5: SAPI algorithm can achieve the globally op-
timal solution with an arbitrarily large probability, given a
sufficiently large value of (.

Proof: Suppose that the globally optimal solution is
(B*,P*,S"), which can maximize $)/_, RF, . or the potential
function ®. Then, we have ®(B*,P*,S*) > <I>(B, P, S) for any
other strategy set rather than the optimal one. If we set [ to
be sufficiently large, we have

exp{BP(B*,P*,S™)} > exp{3®(B,P,S)},

for any (B, P,S) # (B*,P*,S™). Then the stationary probabil-
ity limg_, oo 7(B*,P*,8") =1 |

Remark: Computational complexity of SAPI algorithm: in
each iteration, each selected SBS calculates the utility based
on the current strategy with a computational complexity of
O(1). Then, each selected SBS calculates the potential utility
for all possible strategy space of spectrum bands and power
levels with a computational complexity of O(|K| - |P]). Each
selected SBS needs a random number to choose the spectrum
band and power level with a computational complexity of
O(1). After that, the selected SBS decides the best user
assignment with a complexity of O(|N,,| - |Ck|). Therefore,
in total, the computational complexity for each selected SBS
is O(max(|K|-|P|, [Nm|-|Ck]))- Similarly, the computational
complexity of CBSI algorithm can be obtained, which is the
same to that of SAPI algorithm.

(24)
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VI. SIMULATION RESULTS

In this section, the simulation results are provided to
evaluate the performance of the proposed algorithms. The
simulation is set up as follows. As shown in Fig. 5, in a 1
kmx1 km area, there is a set of SBSs located, each with a
cell radius of 200 m. A number of spectrum bands are shared
by SBSs, which have different availabilities and bandwidth.
In each cell, a number of users are randomly generated, with
transmission rate requirement randomly selected from [1 1.5 2
2.5] Mbps. The power of noise is set to -90 dB. The path loss
exponent p is set to 3.5, and unit rayleigh fading is adopted.
The channels are with different availabilities ranging from 0.8
to 1. Detailed simulation parameters are given in Table II.
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Figure 5. Simulation scenarios.

Fig. 6 shows the convergence of the proposed CBRI and
SAPI algorithms. The exhausted search (E-S) is employed as
the performance benchmark, which can achieve the optimal
result. However, due to time complexity of exhausted search,
we consider a small scale network with 5 SBSs, 4 power
levels, and 4 bands with 3 channels in each band. It can
be seen that the network utilities obtained by the proposed
algorithms are updated iteratively. After a number of iterations,
both algorithms converge and the SAPI converges to the
optimal solution. Note that the CBRI algorithm converges fast
since the SAPI algorithm adopts stochastic strategy to search
the optimal solution. However, the CBRI algorithm may be
tracked at a local optimal solution, while the SAPI algorithm
can find the global optimal solution with an arbitrary large
probability.
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Figure 6. Convergence of the proposed algorithms.
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Fig. 7 and Fig. 8 show the evolution of power allocation
and spectrum band access strategy for SAPI algorithm, since
it can help achieve the global optimum result, compared with
the CBRI algorithm. The evolution of power levels for 4
SBSs is shown in Fig. 7. It can be seen that the power
allocation strategies keep unchanged after 7 iterations, with 4
SBSs selecting power level 4 and 1 SBS selecting power level
1. It also further validates the convergence of the proposed
algorithm. The evolution of band selection for 5 SBSs is shown
in Fig. 8. It can be seen that the band selection strategies keep
unchanged after around 15 iterations.
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Figure 8. Channel strategy convergence of SAPI.

Fig. 9 compares the convergence speed between CBRI and
best response (BR) algorithms for different power levels. We
consider a network consisting of 15 SBSs serving 6 users in
each SBS, 8 power levels, and 5 bands with 5 channel in
each band in the following simulations. It can be seen that the
CBRI converges faster than BR algorithm since CBRI allows
the non-interfering users concurrently updates their strategies.
Moreover, with more power levels to choose, the network
utility can be slightly improved.

Fig. 10 compares the network utility for different algo-
rithms. It can be seen that the proposed algorithms converge
fast. Moreover, the network utility obtained from the SAPI
algorithm is better than that from the CBRI algorithm. The
reason is that, although both can converge to NEs, which
correspond to either locally or globally optimal solutions, the
SAPI can avoid to be tracked in a local optimum by adopting
stochastic updating policy.
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Figure 9. Comparison between CBRI and BR.

68

64

Network utility
5 8 8§ 8

I
IS

IN
o

36 i i i i i i i
0 10 20 30 40 50 60 70 80

Number of iterations

Figure 10. Network utility with respect to iterations for different algorithms.

Fig. 11 shows the network utility with respect to transmis-
sion rate requirement under different learning parameter [.
For simplicity, we consider all users have the same data rate
requirement. It can be seen that with a higher rate requirement,
the network utility is lower. In addition, it can been seen that
a large [ can lead to a higher network utility, because it helps
to converge to the globally optimal solution.
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Figure 11. Network utility versus user requirement for different /3.

Fig. 12 shows the network utility with respect to transmis-
sion rate requirement under different satisfaction parameter a.
It can be seen that with a higher rate requirement, the network
utility is lower. Moreover, it can also be seen that a larger o can
improve the network utility, since it brings more satisfaction
for the same amount increase in transmission rate.
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VII. CONCLUSION

In this paper, we have investigated spectrum access, power
allocation, and user scheduling jointly in 5G networks to
improve users’ service of experience. A local interaction
game has been established based on interference graph. Two
decentralized algorithms have been devised, namely CBSI
and SAPI algorithms, to converge to NE, corresponding to
either the local or global maximizer of the aggregate user
satisfaction across the network. The SAPI algorithm can find
the global optimal solution with an arbitrary large probability,
when a learning parameter is set to be sufficiently large. For
the future work, we will consider user association, which can
further improve service experience through allocating users to
suitable SBSs and spectrum bands. Additionally, when energy
harvesting technologies are employed at SBSs to improve
energy efficiency, the users’ quality of experience might be
disturbed due to intermittent arrival of renewable energy [35].
Therefore, it is necessary to consider the energy status of SBSs
when performing spectrum sharing.
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