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Abstract—With proliferation of computation-intensive Internet of Things (IoT) applications, the limited capacity of end devices
can deteriorate service performance. To address this issue, computation tasks can be offloaded to the Mobile Edge Computing
(MEC) for processing. However, it consumes considerable energy to transmit and process these tasks. In this paper, we study
the energy efficient task offloading in MEC. Specifically, we formulate it as a stochastic optimization problem, with the objective
of minimizing the energy consumption of task offloading while guaranteeing the average queue length. Solving this offloading
optimization problem faces many technical challenges due to the uncertainty and dynamics of wireless channel state and task
arrival process, and the large scale of solution space. To tackle these challenges, we apply stochastic optimization techniques
to transform the original stochastic problem into a deterministic optimization problem, and propose an energy efficient dynamic
offloading algorithm called EEDOA. EEDOA can be implemented in an online way to make the task offloading decisions with
polynomial time complexity. Theoretical analysis is given to demonstrate that EEDOA can approximate the minimal transmission
energy consumption while still bounding the queue length. Experiments results are presented which shows the EEDOA’s
effectiveness.

Index Terms—Internet of Things; Mobile Edge Computing; Energy Efficient Offloading; Dynamic Offloading
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1 INTRODUCTION

With the prosperous development of Internet of
Things (IoT), the number of computation-intensive
applications running on the IoT devices becomes ever-
increasing [1], [2]. These computation-intensive appli-
cations typically require powerful computing ability
and incurs high energy consumption to process them
locally on the devices, whereas the computing and
battery capacities of the IoT devices are limited. To
tackle the challenge, the computation tasks can be
offloaded from IoT devices to the cloud with powerful
computing capacity for processing. As a promising
technology, mobile edge computing (MEC) is intro-
duced to provide computing service at the network
edge. Unlike the conventional cloud computing which
is remote from the IoT devices, MEC can be deployed
at the radio access point such as a base station. MEC
can help reduce the traffic of core network and the
service latency [3]. The IoT devices can get better
computing service and prolong the battery life by of-
floading the computation tasks [4]. Therefore, the task
offloading in MEC for IoT has attracted significant
attention from both industry and academia [5], [6].
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Computation offloading from the IoT devices to
MEC incurs high energy consumption which accounts
for a significant portion of the device’s total energy
consumption [7], [8]. In IoTs, the energy consumption
for transmission of each device is greatly affected
by the wireless channel state. When the channel
condition is better, the transmission rate would be
higher, and it needs less time to transmit data, thus
reducing the transmission energy consumption. On
the contrary, when the channel condition is worse,
more energy would be consumed to transmit the same
amount of data. Thus, the IoT devices’ transmission
energy consumption could be reduced by postponing
task offloading until the wireless channel becomes
better. However, the IoT devices’ queue lengths would
become large and even unstable [9]. Therefore, it is
critical to design an effective task offloading strategy
which could optimize the energy efficiency while
providing performance guarantees for the IoT devices.

It faces several challenges to design such an ef-
fective offloading strategy. Firstly, the quality of the
wireless channel is dynamic and changeable over
time. It can be affected by not only the locations of IoT
devices, but also other factors like network conges-
tion, fading, etc [10]. Moreover, the time-varying chan-
nel state is hard to be predicted exactly in practice.
Besides, the task arrival process of each IoT device is
also hard to obtain. Therefore, it is of great challenge
to design an offloading strategy which could adapt to
the dynamics of channel condition and task arrival.
Secondly, as the IoT devices’ number rises rapidly,
the scale of the energy efficient dynamic offloading
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problem would be huge [11]. Thus, it is vital to design
a low-complexity and efficient offloading algorithm to
address this issue.

This article focuses on the energy efficient dynam-
ic offloading problem in MEC for IoT. A stochastic
optimization problem is formulated aiming at mini-
mizing the average transmission energy consumption
and guaranteeing the devices’ performance. By tak-
ing advantage of stochastic optimization techniques,
we design an energy efficient dynamic offloading
algorithm (EEDOA) to solve this problem. EEDOA
dynamically makes offloading decisions without any
statistics of channel condition or task arrival process,
and it balances the energy efficiency and queue length
by setting a parameter V . Mathematical analysis is
given which demonstrates that the time complexity
of EEDOA is polynomial. In addition, EEDOA can
approximate the optimal transmission energy con-
sumption while still guaranteeing the upper bound of
queue length. Experiment results show the EEDOA’s
effectiveness.

For the rest of this article, we present related work
in Sec. 2. System model and energy efficient offloading
optimization problem are presented in Sec. 3. In Sec. 4,
EEDOA is proposed to solve this optimization prob-
lem effectively. Sec. 5 gives the performance analysis
for EEDOA. In Sec. 6, experiments are conducted to
evaluate EEDOA. This article is concluded in Sec. 7.

2 RELATED WORK

There had been some works about the computation
offloading in MEC. Munoz et al. [11] focused on a
femto-cloud system and presented an optimal com-
putation and radio resources allocation strategy to
optimize the energy consumption and latency concur-
rently. Wang et al. [12] focused on the energy saving
problem in cloud radio access network, and formu-
lated a non-convex energy minimization optimization
problem. Then, an iterative algorithm was designed
to solve this problem. Chen et al. [13] proposed a
distributed algorithm by taking advantage of game
theory for the computation offloading problem.

Yu et al. [14] studied the computing and radio
resources allocation strategy for the MEC system,
where multiple devices accessed the MEC by Orthog-
onal Frequency-Division Multiplexing Access. They
proposed an allocation algorithm which could save
energy and offload more computing tasks at the same
time. Lyu et al. [15] focused on the task offloading
in proximate cloud, and formulated a framework
to optimize the system utility. The NP-hard of the
proposed utility optimization problem was proven,
and a heuristic algorithm was given. You et al. [16]
considered the case that the wireless energy transfer
powered the mobile cloud computing, and formulated
an energy efficient framework to maximize the com-
puting probability with the constraints of energy and

delay. Most of these researches were based on the
prediction or assumption of task arrival or channel
state. However, the offloading traffic of IoT devices
and the wireless channels’ quality are highly dynamic
and hard to predict exactly.

To deal with this challenge, some stochastic op-
timization techniques have been applied in recent
works. Mao et al. [17] investigated the computing of-
floading in the energy harvesting devices, and devised
an algorithm to reach the minimal execution cost. Lyu
et al. [18] studied the cooperation offloading of several
selfish devices, and proposed a distributed algorithm
with the low time complexity to optimize the energy
consumption. Kwak et al. [19] focused on computing
offloading for various applications in single-user MEC
system, and designed a dynamic algorithm which
could satisfy the delay constraints and minimize the
energy consumption. Jiang et al. [20] investigated the
scheduling scheme for one multi-core mobile device,
and designed an algorithm to optimizae the ener-
gy consumption while stabilizing the queue. These
works mainly focused on single-user system. It is
more challengeable to design offloading strategy for
multi-user system. Furthermore, as the IoT devices’
number increases rapidly, a low-complexity algorithm
is critical for the task offloading in multi-user system.

Lyu et al. [21] focused on the task scheduling prob-
lem to maximize the system utility, and designed an
optimal scheme which could decrease the feedbacks
from IoT devices. Mao et al. [22] focused on the
resource management in multi-user MEC system, and
built one optimization model to optimize the power
while stabilizing the queue. However, these works
gave few insights on the impact of channel condition
on the devices’ energy consumption. To tackle the
above issues, we focus on the task offloading in
multiple users MEC system, and propose a stochastic
energy efficient optimization framework. And an ef-
fective algorithm which requires no prior knowledge
about the task arrival or channel state’s statistical
information is designed to solve this optimization
problem.

3 SYSTEM MODEL AND PROBLEM FORMU-
LATION

3.1 System Model
One MEC system with a base station (BS) is consid-
ered. The BS has a MEC server providing services
to n IoT devices in proximity. IoT devices can access
the MEC server through the wireless channels, and
offload the computation tasks for processing. By com-
putation task offloading, the IoT devices can obtain
better service and prolong the battery life. The set of
the IoT devices is collected by I = {1, 2, · · · , n}, and
a time-slotted system is considered, which is indexed
by t ∈ {0, 1, · · · , T − 1} with slot length τ . Table 1
gives the main notations.
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TABLE 1
NOTATIONS AND DEFINITIONS

Notion Definition
I IoT devices set
τ Time slot length
Pi Transmit power of the IoT device i
S(t) Number of available sub-channels in slot t
hi(t) Channel power gain for IoT device i on the

sub-channel in time slot t
B Bandwidth of each sub-channel
N0 Noise power spectral density

Ri(t) Task offloading rate of IoT device i in slot t
κi(t) Offloading duration of IoT device i during slot t
e(t) Transmission energy consumption of all IoT devices

in slot t
Ai(t) Amount of computation tasks arrived at IoT device

i in slot t
Qi(t) Queue backlog of the IoT device i in slot t
Di(t) Amount of computation tasks at IoT device i which

will be offloaded in slot t

3.2 Task Model and Offloading Model

For each IoT device i, let Ai(t) (in bits) represent the
amount of arrived computation tasks. For generali-
ty, these IoT devices are considered heterogeneous.
Therefore, Ai(t) can be different among different IoT
devices. Note that we do not need any prior statistic
information about Ai(t), which is also hard to be
obtained in real-life systems. This makes our model
more extensive and applicable.

Let S(t) denote the number of available uplink
sub-channels. For generality, we consider S(t) can be
dynamic over different time slots. For each IoT device
i, define Pi as its transmit power, and hi(t) as the
channel power gain in slot t [23]. Then, the achievable
task offloading rate (in bit/s) is denoted by Ri(t) as
follows,

Ri(t) = B log2(1 +
Pihi(t)

BN0
), (1)

where B is the sub-channel’s bandwidth, and N0 is
the noise power spectral density.

This article studies the task offloading for the IoT
devices in the MEC system. Define the task offloading
decisions as κ(t) = {κ1(t), · · · , κn(t)}, where κi(t)
denotes the offloading duration for IoT device i. Then,
the available amount of computation tasks offloaded
by device i is Di(t) = Riκi(t).

Each IoT device maintains a task buffer to store the
arrived but not yet offloaded tasks. Let Qi(t) denote
the task buffer’s queue backlog at IoT device i. Since
each IoT device can not offload more than what it has,
it should be satisfied that

κi(t) ≤
Qi(t)

Ri(t)
, ∀i ∈ I. (2)

Consider each IoT device operates in narrow-band,
thus it can only access a sub-channel at the same time
[24]. Hence, it holds that

0 ≤ κi(t) ≤ τ, ∀i ∈ I. (3)

Together with (2) and (3), we can obtain that

0 ≤ κi(t) ≤ Ti(t), ∀i ∈ I, (4)

where Ti(t) = min{Qi(t)/Ri(t), τ}.
Similar to [21], we consider that each sub-channel

can be accessed by the time division multiple access
(TDMA), where a sub-channel can be accessed by dif-
ferent devices at different times during one slot. More-
over, a IoT device can access different sub-channels
at different times to offload computation tasks during
one slot [24]. Therefore, the total offloading duration
of all the IoT devices must not exceed the time slot
length of all the available sub-channels, as described
in (5).

n∑
i=1

κi(t) ≤ S(t)τ. (5)

3.3 Task Queuing Model

Recall that Qi(t) denotes the queue backlog of IoT
device i, and Di(t) represents the amount of offloaded
computation tasks in device i. Then, the queue back-
log in the next slot, Qi(t+ 1), is,

Qi(t+ 1) = max{Qi(t)−Di(t), 0}+Ai(t). (6)

To reduce the queueing delay and maintain the
queue stability of these IoT devices, for each IoT
device i, we bound its average queue backlog qi across
the time slots, which is,

qi = lim
T→∞

1

T

T−1∑
t=0

E{Qi(t)} < ε,∃ ε ∈ R+. (7)

3.4 Energy Model

For each IoT device i ∈ I , the energy consumption
for transmission hinges on the transmit power and
offloading duration, i.e., ei(t) = Piκi(t). Thus, the en-
ergy consumed by all the IoT devices for transmission
is,

e(t) =

n∑
i=1

Piκi(t). (8)

As the wireless channels’ qualities are dynamic and
change over different time slots, the task offloading
speed and energy consumption for transmission dur-
ing one slot also vary across time. Thus, we target at
the average transmission energy consumption in long
time scale which is expressed in (9).

e = lim
T→∞

1

T

T−1∑
t=0

E{e(t)}. (9)
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3.5 Optimization Problem

When the wireless channels are under better condi-
tion, the transmission speed could be larger. Thus, it
is preferred to transmitting offloadable tasks when the
wireless channels are better so as to reduce the overall
transmission duration and the energy consumption.
However, if we do not offload the tasks until the
wireless channels become good enough, the queue
backlog of the IoT devices might become very large
and the IoT devices might be unstable. Therefore, we
can see that tradeoff exists between the transmission
energy consumption and queue backlog. In this arti-
cle, a unified optimization problem is formulated for
the computation offloading in IoT devices, which aims
at minimizing average transmission energy consump-
tion while guranteeing the average queueing lantency.

min
κ(t)

e = lim
T→∞

1

T

T−1∑
t=0

E{e(t)} (10)

s.t. (4), (5) and (7).

Remark: Problem (10) is a stochastic optimization
problem as the computation task arrivals and the
wireless channel conditions vary across time random-
ly. Since the statistical information is generally hard
to be acquired or predicted accurately in real systems,
it is of great challenge to solve Problem (10) offline.
Moreover, as the IoT devices’ number rises rapidly,
the solution space is increasing dramatically. How to
solve the problem efficiently with low complexity is
also very challenging. To attack the above challenges,
an online task offloading algorithm is proposed which
has no requirements on the statistical information of
computation task arrivals or channel conditions, in
Sec 4.

4 ENERGY EFFICIENT DYNAMIC OFFLOAD-
ING ALGORITHM DESIGN

In this section, taking advantage of Lyapunov opti-
mization techniques [25], an energy efficient dynamic
offloading algorithm called EEDOA is designed to
solve Problem (10). By dynamically making the of-
floading decisions, EEDOA can achieve the tradeoff
between the transmission energy consumption and
queue backlog, and arbitrarily approximate the op-
timal transmission energy consumption while stabi-
lizing the IoT devices.

4.1 Problem Transformation

We define Θ(t) as the queue backlog matrix of the
IoT devices, i.e., Θ(t) = (Qi(t)). Let L(Θ(t)) denote
the Lyapunov function, which is,

L(Θ(t)) =
1

2

n∑
i=1

Q2
i (t). (11)

In (11), L(Θ(t)) indicates the IoT devices’ queue back-
log state. A large L(Θ(t)) implies that at least a IoT
device’s queue backlog is large. If and only if the
queue backlog of each IoT device is small, L(Θ(t))
would be small. Thus, we seek to reduce the value of
L(Θ(t)) to maintain a low congestion state of the IoT
devices. Define conditional Lyapunov drift as ∆(Θ(t)) in
(12).

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}. (12)

Recall that this article minimizes the transmission
energy consumption and guarantees the IoT devices’
queue backlog. Following Lyapunov optimization
theory, combining transmission energy consumption
with queue backlog, the drift plus energy is,

∆(Θ(t)) + VE{e(t)|Θ(t)}. (13)

In (13), V ≥ 0 is a tradeoff parameter between the
transmission energy consumption and queue backlog.
Particularly, a large V indicates that more weight is
put on transmission energy consumption.

Next, the drift plus energy’s upper bound is given
by Theorem 1.

THEOREM 1: In slot t, if Ai(t) and Ri(t) are upper
bounded by Amax

i and Rmax
i over the time slots, the

drift plus energy with any task offloading algorithm
satisfies,

∆(Θ(t))+VE{e(t)|Θ(t)} ≤ C

+
∑
i∈I

Qi(t)E{Ai(t)−Ri(t)κi(t)|Θ(t)}

+ V
∑
i∈I

E{Piκi(t)|Θ(t)},
(14)

where C = 1
2 [
∑

i∈I(A
max
i )2 +

∑
i∈I(R

max
i τ)2] is a

constant.
Proof: Taking square on (6) and exploiting

(max[a − b, 0])2 ≤ a2 + b2 − 2ab for any a, b ≥ 0, we
can obtain (15).

Q2
i (t+ 1) ≤ Q2

i (t) +D2
i (t) +Ai(t)

2 − 2Qi(t)Di(t)

+ 2Ai(t)max[Qi(t)−Di(t), 0].
(15)

Let D̄i(t) represent the actual amount of compu-
tation tasks offloaded from IoT device i. Thus, (16)
holds.

D̄i(t) =

{
Qi(t), Qi(t) ≤ Di(t)

Di(t), otherwise.
(16)

So it holds that max[Qi(t) −Di(t), 0] = Qi(t) − D̄i(t).
And we can rewrite (15) as,

Q2
i (t+ 1) ≤ Q2

i (t) +D2
i (t) +A2

i (t)

+ 2Qi(t)[Ai(t)−Di(t)]− 2D̄i(t)Ai(t).
(17)

Since D̄i(t) and Ai(t) are non-negative, it holds (18).

1

2
[Q2

i (t+ 1)−Q2
i (t)] ≤

1

2
[A2

i (t) +D2
i (t)]

+Qi(t)[Ai(t)−Di(t)].
(18)
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Summing over all the devices on (18) and taking
conditional expectations, (19) holds.

∆(Θ(t)) ≤1

2

∑
i∈I

E{A2
i (t) +D2

i (t)|Θ(t)}

+
∑
i∈I

Qi(t)E{Ai(t)−Di(t)|Θ(t)}.
(19)

Since for any i ∈ I , there holds that Ri(t) ≤ Rmax
i

and κi(t) ≤ τ , we obtain

Di(t) = Riκi(t) ≤ Rmax
i τ. (20)

According to (20) and Ai(t) ≤ Amax
i , (21) can be

obtained.∑
i∈I

E{A2
i (t)+D2

i (t)|Θ(t)} ≤
∑
i∈I

[(Amax
i )2 +(Rmax

i τ)2].

(21)
Let C equal to 1

2

∑
i∈I [(A

max
i )2+(Rmax

i τ)2], and add
VE{e(t)|Θ(t)} to (19). Thus,

∆(Θ(t)) + VE{e(t)|Θ(t)} ≤ C + VE{e(t)|Θ(t)}

+
∑
i∈I

Qi(t)E{Ai(t)−Di(t)|Θ(t)}. (22)

Substituting (8) into (22), it yields (14).

4.2 Energy Efficient Dynamic Offloading Algorith-
m
In this subsection, we minimize the drift plus energy’s
upper bound, and devise an optimal algorithm, EE-
DOA. By minimizing the upper bound in each time
slot, EEDOA can effectively reduce the average energy
consumption for transmission and maintain the queue
backlog of each IoT device at a low level.

In each time slot, EEDOA makes the offloading
decisions κ(t) to minimize the the drift plus energy’s
upper bound, expressed by,

min
κ(t)

{C +
∑
i∈I

Qi(t)[Ai(t)−Ri(t)κi(t)] + V
∑
i∈I

Piκi(t)}.

(23)
s.t. (4), (5).

Since C and Ai(t) are constant in each slot t, (23)
can be reduced to (24).

min
κ(t)

∑
i∈I

[V Pi −Qi(t)Ri(t)]κi(t). (24)

Transforming the above minimization problem to
the maximization problem, we have (25).

max
κ(t)

∑
i∈I

ωi(t)κi(t) (25)

s.t. (4), (5),

where ωi(t) = Qi(t)Ri(t)− V Pi.
Problem (25) can be regarded as the linear relax-

ation of a knapsack problem. S(t)τ is the capacity
of the knapsack, and ωi(t) can be considered as the
item’s unit value. Hence, for this linear relaxation

Algorithm 1 Energy Efficient Dynamic Offloading
Algorithm (EEDOA)

1: for all i ∈ I do
2: Calculate the Ri(t), Ti(t) and ωi(t).
3: end for
4: Sort all the devices i in the descending order of

ωi(t).
5: Set the index χ according to (26).
6: for all i ∈ I do
7: Set the offloading decision κi(t) according to

(29).
8: end for

knapsack problem, the optimal solution is to select
the item with highest non-negative ωi(t) to fulfill the
knapsack [26]. Therefore, we sort the IoT devices in
the descending order of ωi(t), where ωi(t) ≥ ωi+1(t).
The devices with larger values of ωi(t) have higher
offloading priorities, and are filled into the knapsack
prior to other devices. Then, the interruption condi-
tion of the knapsack filling process is that the residual
capacity of the knapsack is empty or the unit value
of the selected item is negative. Therefore, the index
of interruption item χ can be derived as follows,

χ = min{χ1, χ2}, (26)

where

χ1 = arg min
i

i∑
j=1

Ti(t) > S(t)τ, (27)

χ2 = arg max
i

ωi(t) ≥ 0. (28)

Thus, we can obtain the optimal offloading deci-
sions κ∗(t),

κ∗
i (t) =


Ti(t), i < χ

min{S(t)τ −
∑χ−1

i=1 Ti(t), Tχ(t)}, i = χ

0, i > χ.
(29)

Remark: Recall that there exists tradeoff between
transmission energy efficiency and queue backlog. For
each IoT device i, combining its transmission energy
consumption and queue length, EEDOA defines ωi(t)
as its unit offloading profit. ωi(t) hinges on the current
queue backlog and channel condition, as well as
varies with time. In each time slot t, by selecting the
IoT devices with higher non-negative ωi(t) to offload
tasks, EEDOA maximizes the overall offloading profit
for all the IoT devices. As a result, EEDOA can reduce
both transmission energy consumption and queue
length effectively. In addition, according to the defini-
tion of ωi(t), EEDOA can achieve the tradeoff between
queue backlog and transmission energy consumption
arbitrarily by adjusting V .

Algorithm 1 presents the details of the EEDOA
algorithm.
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5 ALGORITHM ANALYSIS FOR EEDOA

We first analyze the EEDOA’s performance through
mathematical analysis, then give the time complexity
of EEDOA.

Define Q̄ as the time-average queue backlog of the
IoT devices, expressed in (30).

Q̄ = lim
T→∞

1

T

T−1∑
t=0

n∑
i=1

E{Qi(t)}. (30)

To derive the upper bounds of e and Q̄, we present
that there exists an optimal strategy which is indepen-
dent of the queue length, and makes the offloading
decisions κ(t) following some fixed probability dis-
tribution, and can optimize the transmission energy
efficiency. The details are given in Lemma 1.

LEMMA 1: For any task arrival rate λ satisfying
λ ∈ Λ, a task offloading strategy π∗ exists, which does
not depend on the current queue length and satisfies,

E{eπ
∗
(t)} = e∗(λ);

E{Ai(t)} ≤ E{Ri(t)κ
π∗

i (t)},

where Λ represents the system capacity, and e∗(λ)
represents the optimal transmission energy consump-
tion with λ.

Proof: Caratheodory’s theorem can be used to
prove Lemma 1 [25]. For the sake of readability, the
detailed proofs are omitted here.

Recall that the task arrival rate Ai(t) of each IoT
device is upper bounded by Amax

i . Thus, the energy
consumption for transmission would be upper bound-
ed by a finite value ê and lower bounded by a finite
value ě. Then, by applying Lemma 1, Theorem 2 gives
the average transmission energy consumption’s upper
bound and queue length’s upper bound.

THEOREM 2: Suppose there exists a positive ϵ sat-
isfying λ + ϵ ∈ Λ. For the given V , the transmission
energy consumption of EEDOA satisfies,

eEEDOA ≤ e∗ +
C

V
. (31)

In addition, the average queue length of EEDOA is
also upper bounded in (32).

Q̄ ≤ C + V (ê− ě)

ϵ
, (32)

where C is a constant given by Theorem 1, and e∗ rep-
resents the optimal transmission energy consumption
with λ.

Proof: According to Lemma 1, for the task arrival
rate λ + ϵ, a randomized policy π′ exists, which
satisfies,

E{eπ
′
(t)} = e∗(λ+ ϵ); (33)

E{Ai(t)}+ ϵ ≤ E{Ri(t)κ
π′

i (t)}. (34)

Since EEDOA minimizes (22)’s R.H.S., for the of-
floading strategy π′, we can obtain that

∆(Θ(t)) + VE{e(t)|Θ(t)} ≤ C + VE{eπ
′
(t)|Θ(t)}

+
∑
i∈I

Qi(t)E{Ai(t)−Ri(t)κ
π′

i (t)|Θ(t)}.

(35)

Plugging (33) and (34) into (35), it can be obtained
that

∆(Θ(t))+VE{e(t)|Θ(t)} ≤ C+V e∗(λ+ϵ)−ϵ
∑
i∈I

Qi(t).

(36)
Taking expectations on (36), and using iterated ex-

pectations, we can obtain

E{L(Θ(t+ 1))− L(Θ(t))}+ VE{e(t)}

≤ C + V e∗(λ+ ϵ)− ϵ
∑
i∈I

E{Qi(t)}. (37)

Summing (37) over the slots, it holds,

E{L(Θ(T ))} −E{L(Θ(0))}+ V
T−1∑
t=0

E{e(t)}

≤ CT + V Te∗(λ+ ϵ)− ϵ

T−1∑
t=0

∑
i∈I

E{Qi(t)}.
(38)

For generality, consider that the queue lengths of
the IoT devices are empty when t = 0. Thus, we
can obtain L(Θ(0)) = 0. Moreover, since it holds that
L(Θ(T )) ≥ 0, it holds,

V

T−1∑
t=0

E{e(t)} ≤ CT+V Te∗(λ+ϵ)−ϵ

T−1∑
t=0

∑
i∈I

E{Qi(t)}.

(39)
Since Qi(t) and ϵ are non-negative, we obtain (40).

V
T−1∑
t=0

E{e(t)} ≤ CT + V Te∗(λ+ ϵ). (40)

By dividing (40) by V T , it yields

1

T

T−1∑
t=0

E{e(t)} ≤ C

V
+ e∗(λ+ ϵ). (41)

Let ϵ → 0, T → ∞ and apply the Lebesgues dominat-
ed convergence theorem, we obtain (31).

According to (39), we also obtain

ϵ
T−1∑
t=0

∑
i∈I

E{Qi(t)}

≤ CT + V Te∗(λ+ ϵ)− V
T−1∑
t=0

E{e(t)}

≤ CT + V T (ê− ě)

(42)

By dividing (42) by ϵT , and letting T → ∞, we obtain
(32).
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Remark: (31) shows that transmission energy con-
sumption’s upper bound decreases as V rises. How-
ever, (32) shows that the queue length’s upper bound
rises as V increases. Nevertheless, (7) is satisfied if ε is
set as C+V (ê−ě)

ϵ . We use O(1/V ) to represent the upper
bound of gap of energy consumption, and O(V ) to
represent the gap of queue length [21]. Combing
(31) and (32), we can see that EEDOA achieves an
[O(1/V ), O(V )] tradeoff between transmission energy
efficiency and experience. By changing V , EEDOA
can realize different balances between energy con-
sumption and queue backlog. Besides, Theorem 2
also indicates that the minimal transmission energy
consumption can be approximated by EEDOA while
guaranteeing that all the devices are stable.

Next, we provide the time complexity analysis for
EEDOA. According to Algorithm 1, for the two loops
(line 1-3 and line 6-8), EEDOA traverses all the IoT
devices once. Thus, each loop terminates in O(n)
operations, where n is the IoT devices’ number. For
line 4, the process of sorting devices takes O(n log n)
operations with the quicksort algorithm. For line 7,
it takes O(n) operations in the worst case. Thus, the
EEDOA’s time complexity is O(n logn).

6 EVALUATION

This section demonstrates that EEDOA can adapt
to various parameter changes. We also provide the
comparison experiments to show the EEDOA’s effec-
tiveness.

In the experiments, we consider 100 IoT devices
offloading computation tasks. The slot length τ = 1
s. The offloadable task arriving rate and the channel
state are set to follow certain fixed statistical distri-
butions. The amount of data arriving at IoT device i
per second is set to be uniformed distributed within
[0, 2200] bits, i.e., Ai(t) ∼ U [0, 2200] bits. For the
wireless channel, a small-scale Rayleigh fading model
is adopted, and hi(t) is an exponential distribution
with the unit mean, i.e., hi(t) ∼ E(1) [22]. We set the
number of available sub-channels as S(t) ∼ U [10, 30],
and the transmit power of each IoT device as Pi ∼
U [10, 200] mW [21]. Beside, B is set as 1 MHz and
N0 is set as 10−6 W/Hz. To improve the reliability
of the experiments, we run 3000 times for every
setting, and average the results. Note that although
in the experiments, the offloadable task arrivals and
channel states are set according to fixed statistical
distributions, EEDOA actually requires no statistics
for the information in advance.

6.1 Parameter Analysis
6.1.1 Effect of tradeoff parameter
In Fig. 1, we plot the transmission energy consump-
tion and queue length with different V . Fig. 1(a)
shows the relationship between the transmission ener-
gy consumption and tradeoff parameter V . We can see
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Fig. 1. Transmission energy consumption and queue
length with different values of V

that as V rises, the transmission energy consumption
decreases, which conforms (31) in Theorem 2. The
reason is that a larger V means putting more weight
on transmission energy consumption, and EEDOA
would dynamically adjust the offloading decision-
s to reduce the transmission energy consumption.
However, Fig. 1(b) shows that when V increases, the
queue length also rises. This phenomena conforms
(32) in Theorem 2. Nevertheless, the queue length
would converge gradually with more increase of V ,
demonstrating that EEDOA’s queue length would be
bounded. From Fig. 1, it can be observed that by
adjusting V , EEDOA can balance the transmission
energy consumption and queue length. Besides, by
increasing the value of V sufficiently large, EEDOA
can approach the optimal energy consumption and
stabilize all the IoT devices.

6.1.2 Effect of arrival rate
In Fig. 2, we plot the transmission energy consump-
tion and queue length with different task arrival rates.
The arrival rate for each IoT device is set as α ·Ai(t),
where α = 0.8, 1 and 1.2, respectively. Fig. 2(a) illus-
trates that the transmission energy consumption rises
as the arrival rate rises. It is because as the arrival rate
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Fig. 2. Transmission energy consumption and queue
length with different arrival rates

rises, the amount of computation tasks also increases.
As a result, it would consume more energy to offload
the computation tasks. Similarly, Fig. 2(b) shows that
the queue length rises as arrival rate rises. In addition,
we can see that with different arrival rates, both the
transmission energy consumption and queue length
of EEDOA would converge quickly. This shows that
EEDOA can dynamically tune the offloading decisions
to adjust to the change of arrival rate, and make the
IoT devices stable quickly.

6.1.3 Effect of transmit power
In Fig. 3, we plot the transmission energy consump-
tion and queue length with different Pi. For each IoT
device, we set the transmit power as β · Pi, where
β = 0.8, 1 and 1.2, respectively. Fig. 3(a) shows that
as the transmit power rises, the energy consumption
rises. It is because that with the rise of transmit power,
the energy consumption of each IoT device for trans-
mitting data would also increase. Consequently, the
overall transmission energy consumption of EEDOA
would rise. Fig. 3(b) shows that the queue length rises
with the increase of transmit power. The reason is that
when the transmit power increases, EEDOA would
reduce the amount of computation tasks offloaded to
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Fig. 3. Transmission energy consumption and queue
length with different transmit powers

decrease the transmission energy consumption, which
results in the increase of queue length.

6.1.4 Effect of channel power gain
Fig. 4 plots the transmission energy consumption and
queue length with different channel power gains. For
each IoT device, we set the channel power gain to be
the exponential distribution with the mean of γ · µ,
where γ = 0.8, 1 and 1.2, respectively. Fig. 4(a) shows
that as channel power gain rises, the transmission
energy consumption reduces. With the rise of channel
power gain, the offloading rate would increase, and
thus, the transmission duration for offloading tasks
decreases. Consequently, the transmission energy con-
sumption of EEDOA would also decrease. We can see
the similar phenomena in Fig. 4(b) that the queue
length decreases as channel power gain rises. The rea-
son is that as the channel power gain and offloading
rate rise, the tasks offloaded would rise; therefore, the
queue length of EEDOA would decrease.

6.1.5 Effect of number of IoT devices
Fig. 5 plots the transmission energy consumption and
queue length with different numbers of IoT devices.
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Fig. 4. Transmission energy consumption and queue
length with different channel power gains

The IoT devices’ number ranges from 70 to 110 with
an increment of 10. From Fig. 5(a), we can see that
as IoT devices’ number rises, the transmission en-
ergy consumption rises. It is because that when the
IoT devices’ number rises, the amount of offloaded
computation tasks also rises, which causes the rise of
the transmission energy consumption. Fig. 5(b) shows
that as the IoT devices’ number rises, the total queue
length increases. The reason is that the amount of
offloaded computation tasks would rise as the IoT
devices’ number rises. Only part of the increased com-
putation tasks are offloaded, and the rest are stored in
the task buffer waiting for transmitting, which leads
to the increase of queue length.

6.2 Comparison Experiments

To further evaluate the EEDOA’s performance, we
compare EEDOA with two baseline algorithms:

• Equal allocation strategy: In slot t, the offloading
duration is allocated among all the IoT devices
equally.

• Queue-weighted strategy: In slot t, the offload-
ing duration is allocated among the IoT devices
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Fig. 5. Transmission energy consumption and queue
length with different numbers of IoT devices

according to their weighted queue length. Partic-
ularly, IoT devices with larger queue length have
higher priorities, and the offloading durations
allocated to them are longer.

In Fig. 6, we plot the transmission energy con-
sumption and queue length with different algorithms.
Both the transmission energy consumption and queue
length of our EEDOA are the lowest. It is demon-
strated that EEDOA can decrease the transmission
energy consumption as well as the queue length ef-
fectively. It is because EEDOA can dynamically make
the offloading decisions among the IoT devices to
adapt to the channel dynamics and queue length.
In addition, we can see that the transmission energy
consumption of Equal allocation strategy and Queue-
weighted strategy is close; however, the queue length
of Queue-weighted strategy is less than the Equal
allocation strategy. The reason is that Queue-weighted
strategy allocates longer offloading durations to the
IoT devices with larger queue length, reducing the
overall queue length of the IoT devices. Nevertheless,
the Queue-weight strategy does not take into account
the channel dynamics. Our EEDOA considers both
the dynamic channel states and the queue length
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Fig. 6. Transmission energy consumption and queue
length with three different algorithms

information. Fig. 6 shows the superiority of EEDOA
in reducing the transmission energy consumption as
well as the queue length effectively.

7 CONCLUSION

In this article, an online and polynomial-time-
complexity algorithm EEDOA has been proposed for
offloading in MEC to approximate the minimal energy
consumption and guarantee the IoT devices’ delay
performance. It needs no prior statistic knowledge
related with task arrival or channel condition. EEDOA
can also make arbitrary tradeoff between transmis-
sion energy efficiency and queue backlog. A close-
to-optimal transmission energy consumption can be
acquired by EEDOA while guaranteeing the queue
backlog’s upper bound. Experiment results show the
EEDOA’s effectiveness in reducing the transmission
energy consumption and keeping the queue backlog
of IoT devices at a low level.
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