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Abstract—To bring 5G systems and networks to life in large-
scale commercial applications, academia community has started
the research beyond 5G (B5G), in which network slicing (NS) is
proposed as a new paradigm for building service-tailored B5G
networks. In each network slice, to precisely control the service
quality and cost, deploying the service-required virtual network
functions (VNFs) by utilizing the linkage between the charac-
teristics of this slicing task and the characteristics of different
servers in the B5G network is essential. Therefore, aiming at
gaining the ability of learning and adapting new tasks quickly
and cost effectively, we view the NFV deployment problem as
a meta relational learning process that explores the meta map-
ping relation between service-tailored slicing tasks and the B5G
physical network and propose a service-tailored VNF deploy-
ment framework, abbreviated as StailNet. Instead of training
a one-strategy-fits-all deployment model, we focus on “learn-
ing” how to train a deployment model and propose to learn
the features of servers and slicing tasks from the perspective of
knowledge graph-based representation learning, then locate the
initial meta mapping relation by extracting meta information in
the task-agnostic meta space and exploring the service-tailored
meta mapping relation in the task space for each task, so that we
can quickly obtain the solution by a few gradients on the initial
meta mapping relation. To highlight the performances of StailNet,
we do comprehensive simulations. Simulation results demon-
strate that our StailNet outperforms the selected representative
algorithms in the literature.

Index Terms—Beyond 5G, Internet of Things (IoT), knowledge
graph representation learning, meta-learning, network slicing
(NS), virtual network functions (VNFs) deployment.

I. INTRODUCTION

THE EXPONENTIAL growth of new businesses, such
as mobile video services (e.g., YouTube and TikTok),

Internet of Things (IoT)-based services, and Industry 4.0,
has triggered global initiatives toward developing the
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fifth-generation (5G) mobile systems. Since 2020, aiming at
transforming the one-size-fits-all service manner to the one-
size-per-service manner, academia community has started the
emphasis on research beyond 5G (B5G), where various edge
devices and terminals (such as vehicles and drones) [1] have
evolved as key supplementary parts of B5G networks, and
they are placing higher requirements on the network Quality
of Service (QoS).

To support different types of services, B5G relies on the
concept of network slicing (NS) [2]. Each network slice is
composed of flows and network functions (NFs [3], e.g., fire-
walls, monitors, and load balancers) required by the service,
which can be performed over the same substrate network
as an end-to-end logical “dedicated network,” customized
for a specific B5G use case. Thanks to NF virtualization
(NFV) [4], NFs have been decoupled from the dedicated sub-
strate hardware and implemented as software-defined virtual
NFs (VNFs) instances, supporting on-demand service provi-
sioning in each slice. Therefore, as the main enabler of NS,
NFV provides an opportunity to determine how to flexibly
deploy the service-required VNFs in each B5G network slice,
so that the service-specific requirements can be satisfied and
QoS can be further enhanced [5].

However, deploying VNFs in a B5G network slice is more
complicated than solely deploying VNFs in a core network
(e.g., core cloud or datacenters) or in an edge network (e.g.,
edge cloud, edge cloudlet, or datacenters), as we have to
consider deploying VNFs in both core servers (with rela-
tively sufficient resource capacity and high latency) and edge
servers (with limited resource capacity and low latency) [6].
So, to improve the quality of B5G service, we need to uti-
lize the linkage between the characteristics of the slicing
tasks and the characteristics of the different servers in B5G
network. For example, the requirements of autonomous driv-
ing network services are ultralow latency and high reliability,
while the requirements of 4K/8K HD video network services
are high speed and throughput [7], thus autonomous driving
network slices need to place more VNFs in edge servers, and
4K/8K HD video slices need to deploy the required VNFs in
resource-sufficient core servers. Although based on extracting
the features of slicing tasks, there has been some progress [8],
[9], [10], [11], [12], [13], [14], [15] using train and test-based
intelligent algorithms, such as reinforcement learning [16] and
deep reinforcement learning [17] to solve the VNF deployment
problem, these methods of obtaining one-strategy-fits-one/one-
strategy-fits-all model are costly when switching from one task
to another. Because the relationship between physical server
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Fig. 1. Overall architecture of StailNet.

features and slicing task features is not considered in VNF
deployment, their trained model that performs well on one
task and wants to perform well on a slicing task with com-
pletely different characteristics also requires a lot of model
training on completely new data.

Therefore, in this article, we focus on “learning” how to
train a deployment model cost effectively based on a meta-
learning process [18], rather than focusing on training a model
for specific task as traditional goal-driven algorithms do. And
aiming at gaining the ability of learning and adapting new
tasks quickly and cost effectively, we propose a meta relational
learning framework for service-tailored VNF deployments
among different B5G service slices, abbreviated as StailNet.
To simplify the learning process, we tackle the deployment
problem from a novel perspective based on the intuition that
the most critical information to be transferred from the exist-
ing deployment instances to the new slicing task should be
based on the shared relational knowledge [19], which cap-
tures the relationship between physical server characteristics
and slicing task characteristics on VNF deployment. We call
such relation service-tailored meta mapping relation, marked
as r. Moreover, we call the information that facilitates the
acquisition of the shared knowledge as “meta gradient.” In
this article, meta gradient is defined as the loss gradient of
meta mapping relation which will be used to make a rapid
update when transferring meta mapping relation among dif-
ferent tasks. The overall architecture of StailNet is shown in
Fig. 1. Especially, as shown in Fig. 1, to embed the features
of slicing tasks and the B5G physical network in the same
vector space for meta mapping relation extraction and learn-
ing, StailNet is equipped with a knowledge extraction module
based on the knowledge graph representation learning method,
transH [20]. Then, StailNet solves the service-tailored VNF
deployment by dividing into two phases, namely, meta learning

and adaptation, which are helpful in the following two perspec-
tives, respectively: 1) learning and transferring meta gradient
from observed example tasks in the task-agnostic meta space
to locate the initial meta mapping relation and 2) accelerating
the adaptation to different tasks by supporting meta-level con-
tinual learning in the task space. Eventually, we can quickly
converge to the solution by applying a few gradients on the ini-
tial meta mapping relation and with using only a few training
data and iterations.

The remainder of this article is organized as follows.
Section II discusses the related works and the motivation for
this study. Section III presents the B5G network slice model
and discusses service-tailored VNF deployment in a B5G slic-
ing task. In Section IV, technical details of the StailNet are
presented. Section V provides the performance evaluation of
the proposed solution, and Section VI concludes this study.

II. RELATED WORKS AND THE CONTRIBUTIONS

FOR THIS STUDY

In this section, we first review the state-of-the-art works
dealing with the VNF deployment problem. Then, we elab-
orate on the contributions for this study by borrowing the
concept of meta-learning.

A. VNF Deployment

Recent years have witnessed the proliferation of the studies
on the VNF deployment problem for achieving some spe-
cific optimization objectives. For example, in [9] and [10],
mathematical programming methods, such as integer linear
programming (ILP) [12] and mixed ILP (MILP) [13], were
used to solve this optimization problem. A preliminary work
was proposed in [9], aiming at jointly minimizing the maxi-
mum network link utilization and the number of CPU cores
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used by the instantiated VNFs, Addis et al. formulated an
NFV network model suitable for ISP operations and devised
an MILP formulation to solve the generic VNF chain rout-
ing optimization problem. The heuristics [11], [12], [13], such
as the greedy method-based [21], Markov model-based [22],
and so on, are proposed to calculate the approximate optimal
deployment. For instance, de Freitas Bezerra [11] formulated
VNF deployment as a multiobjective problem and designed
two optimization methods, the nondominated ranking genetic
algorithm and the differential evolutionary algorithms, to
calculate the approximate optimal solution.

Moreover, with the booming development of artificial intel-
ligence, recently intelligent methods [14], [15] have become
the most popular methods for VNF deployments and have
achieved more outstanding performance in this optimization
problem than the previous two approaches. Typically, aim-
ing at jointly minimizing the operation cost of NFV providers
and maximizing the total throughput of accepted requests,
Xiao et al. [23] proposed an online policy gradient-based
deep reinforcement learning approach to automatically deploy
SFCs, in which an MDP model is introduced to capture the
dynamic network state transitions. Wang et al. [24] proposed a
deep reinforcement learning-based approach for adaptive NFV-
RA by combining both the graph convolution network and
sequence-to-sequence model to generate placement strategies.

B. Contributions

In summary, further research is required to integrally
address the service-tailored VNF deployment in B5G slic-
ing task as mentioned in Section I. Most existing solutions
are customized for a specific business or application scenario.
Despite the efficiency of business-customized solutions, their
service-specific constraints make them difficult to be flexi-
bly applied to other network scenarios. Although some train
and test-based intelligent algorithms [23], [24] can automati-
cally deploy VNFs based on historical experience, they also
face a dilemma: as for supervised learning [25], it is not
difficult to achieve scenario-by-scenario personalized deploy-
ment, if we can provide enough training data for each task,
but the fact that the arrival of network operations is usually
unpredictable, making this approach too costly for the online
deployment problem. As for unsupervised learning [26], it can
directly output deployment solutions by feeding newly arriv-
ing requests into a model already trained based on historical
data, but with the proliferation of new applications, a model
that cannot adapt dynamically may perform poorly. In addi-
tion, these intelligent approaches need to explore the solution
in a huge action space [27], which introduces some unneces-
sary complexity, because the deployment of different slicing
tasks is highly tendentious, e.g., we unnecessarily search for
the optimal deployment of the autonomous driving slicing task
in the core server.

Therefore, aiming at gaining the ability of learning and
adapting new tasks quickly and cost effectively, rather than
training a one-strategy-fits-all network model, we view the
NFV deployment problem as a meta relational learning pro-
cess that makes learning simple and intuitive to explore the

meta mapping relation between each slicing task and the
physical network. Based on the idea of “learn to learn” in
meta-learning, we solve this problem by focusing on transfer-
ring meta information, enabling the model to learn the most
important meta relation and adapt faster. Consequently, our
main contributions are as follows.

1) We first propose a time-slot-based B5G network slice
model for VNF deployment, which includes both edge
cloud servers and core cloud servers with real-time sta-
tus, and slicing tasks with different requirements that
arrive in real time. Then, we present the definition of
knowledge base, and with the B5G knowledge base, the
definition of service-tailored VNF deployment in a B5G
slicing task is given.

2) To achieve our objective—learning and adapting new
slicing tasks quickly and cost effectively, we pro-
pose a meta relational learning framework, abbreviated
as StailNet, for the service-tailored VNF deployment
among different B5G business slices. In particular,
StailNet is divided into two phases, namely, meta learn-
ing and adaptation, focusing on learning how to train
the service-tailored meta mapping relation for different
slicing tasks. And to embed the information of differ-
ent dimension spaces into the same vector space for
meta information extraction and learning, StailNet is
also equipped with a knowledge extraction module based
on the knowledge graph representation learning method.

3) Extensive experiments are conducted to demonstrate the
convergence and efficiency of knowledge extraction in
StailNet. And trace-driven evaluations on a typical B5G
network topology verify the proposed VNF deployment
framework StailNet superior performance in terms of
average acceptance ratio, cost, and revenue by using only
a few data points and training iterations.

III. NETWORK MODELING

In this section, we first introduce the time-slot-based B5G
network slice model. Then, we present the task formulation of
StailNet. Key notations are listed in Table I.

A. B5G Network Slice Model

In B5G networks, it is different from solely deploying
requests in core network or edge network, we have to con-
sider placing VNFs in both edge cloud servers and core
cloud servers so as to satisfy some strict QoS requirements.
Therefore, to implement a B5G physical network, we model
the network as a connected undirected graph Gs = (Ns, Ls)

along with |Ns| server nodes and |Ls| links. Especially, the
set of core nodes is represented as Nsc, and the set of edge
nodes is represented as Nse, as well as there are several lev-
els of switches for ensuring the connectivity of the nodes. To
deal with the real-time network variations, we consider that the
network slices deploy executes in an online manner, where the
set of time slots is Tm = {1, 2, . . . , |Tm| − 1}, and each time
slot t ∈ Tm starts when a slicing task is arrived and termi-
nates when this task is accepted or rejected to deployment. At
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TABLE I
KEY NOTATIONS

each time slot t, each physical node n ∈ N in Gs has an avail-
able resource capacity (i.e., computing resources and memory
resource), marked as C(nt) = (Ccpu(nt), Cmem(nt)), note that
other types of resource, such as storage, can also be added in
C(nt) if necessary. While, for each link ls ∈ Ls in Gs, Cbw(lts)
denotes the available transmission resources between server
nodes ni and nj, where i �= j and i, j ∈ N.

With respect to the virtual slices, we consider a group of
B5G tasks T that requires |T| different slices. The business
traffic is generated by the different tasks. Each network task
Tr (r ∈ |T|) requests a specific set of VNFs, we adopt the
graph theory to model them and label the rth slicing task as
Tr = (F, Lv), where F = {v1, v2, . . . , v|F|} is the set of service-
required VNFs in the rth slice, and each vi ∈ F has a resource
demand in terms of CPU and memory, denoted by D(vi) =
(Dcpu(vi), Dmem(vi)). And if a VNF vi ∈ F is deployed, it
requests the queuing delay and processing delay on node nj ∈
Ns, marked as d(vi) > d(nj). While Lv is the set of virtual links
for data forwarding, and we assume that a traffic flow lvij is
injected into the network through a server node ni, and leaves
from a server node nj. The flow on each segment must be
forwarded on links that meet certain bandwidth requirements,
denoted as Dbw(lv). In virtualization and slicing research, each
slicing task arrives, following the known Poisson distribution,

and has an arriving time tis and a duration time tid, representing
how long request Tr is expected to be in service after its slice
be placed.

B. Task Formulation of StailNet

In this section, we first present the formal definition of the
knowledge base and denote the deployment information in
B5G knowledge base. Then, with a B5G knowledge base, we
give the definition of the service-customized VNF deployment
for a B5G slicing task Tr and formulate the overall architecture
of StailNet.

Definition 1 (Knowledge Base K): The content of a particu-
lar domain or field of knowledge. In a knowledge base K, each
fact is stated in a triple of the form (entity, property, value),
in which value can be either a literal or an entity. The sets of
entities, properties, literals, and triples are denoted by E, P, L,
and TP, respectively.

For example, the deployment information for a B5G slicing
task can be stated in the triples of the form (h, r, t), where
h represents one of the VNFs in a slice, which provides the
deployment policy for h to t, r represents the mapping relation
for this VNF deployment, and t represents a physical node in
the physical network that already hosts or tends to host this
VNF. On this context, the service-tailored VNF deployment
in a B5G slicing task Tr can be defined as follows.

Definition 2 (Service-Tailored VNF Deployment in a B5G
Slicing Task Tr): With a B5G knowledge base KB, predicting
the tail entity in the newly arrived slicing task Tr linked with
an adaptive mapping relation rr to head entity, formulated
as rr : (h, ?), is called service-tailored VNF deployment in
the slicing task Tr.

As defined above, after transforming the unstructured
network information to uniformly structured information -
triples in the knowledge base KB, a service-tailored deploy-
ment task Tr can be always defined for a service-tailored
mapping relation. So intuitively, we can figure out how to
obtain a deployment strategy by learning how the relational
information to be learned and transferred from the existing
deployment instances to the new slicing task, to learn and
adapt new tasks quickly and cost effectively.

Specifically, we train the service-tailored rr with two data
sets. The first one is meta-training set M = {(hM, tM) ∈
EB × EB|(hM, r

̂θmeta
, tM) ∈ TPB}, which is the support set

consisting of several randomly selected deployment instances
in KB to learn and transfer meta information from the task-
agnostic meta space. And r

̂θmeta
is marked the initial meta

mapping relation. The second one is adaptation set Ar =
rr : {(hA, t?) ∈ EB × EB|(hA, rθ r

meta
, t?) ∈ TPB} for slicing

task Tr, which is the query set consisting of all triples to be
predicted to learn and transfer meta information from the task
space. And in Ar, hi is the feature vector of the ith VNF in Tr,
t? is the solution for hosting this VNF, rr is the service-tailored
meta mapping relation, which can obtain by fine-tuning the
initial meta mapping relation according to the features of this
task. With these two data set, the meta-optimization is per-
formed over parameters θ of mapping relation r, whereas the
solution is computed using service-tailored r.
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In effect, by optimizing the parameters of the rθ -based
deployment strategy, the proposed StailNet can take one or
a small number of gradient steps on the initial meta mapping
relation to converge quickly to the final solution. Thus, the
major difference between StailNet and the previous train and
test-based deployment is that while both are based on empir-
ical learning, the latter is focused on training a model that
performs well on certain objectives (e.g., revenue and request
acceptance rate), while the former is focused on learning how
to train a model based on a meta relational learning process, so
that we can achieve the objective quickly and cost effectively.

Accordingly, the service-tailored VNF deployment in
StailNet can be divided into two phases: meta learning and
adaptation, learning the initial r

̂θmeta
and fine-tuning it to obtain

the service-tailored rr, respectively. As shown in Fig. 1, in
meta learning, meta learner, the agent of this learning phase,
learns and transfers meta information from the meta training
set M and acquires initial metamapping relations r by a simple
meta-training process

r
̂θmeta
= argmax

θ

1

n

n
∑

k=1

E
τ∼Tk

[

rk
θ

]

(1)

̂θmeta = argmax
θ

1

n

n
∑

k=1

E
τ∼Tk

[

�θ

(

Tk
)]

(2)

where θ is the parameters of r, rk
θ is the mapping relation

of task Tk in M, ̂θmeta is the parameters of the initial meta
mapping relation r

̂θmeta
, τ is the triple in Tk, and n is the

number of tasks in M. �θ (Tk) is the objective evaluated on
Tk. Particularly, in order to train meta learner to learn how
to get the relation r, the loss gradient of lr(θ) is calculated
and labeled as �rk

θ
�θ (Tk), which acts as the meta gradient in

the task-agnostic meta space for guiding the learning of meta
learner. Accordingly, the initial meta mapping relation r

̂θmeta
will be obtained by the multitask objective that is guided by
the representation loss of tasks in M.

In the adaptation phase, deployment learner, the agent of
this learning phase, learns and transfers meta information from
the adaptation set Ar, i.e., the specific task space. As shown in
Fig. 1, when adapting to a new task Tr, knowledge extraction
module of StailNet extracts the knowledge of the substrate
network and the task newly arrived (i.e., Tr) and embeds the
knowledge of them in the same vector space. Then, the deploy-
ment learner extracts the feature of Tr and provides the meta
learner with a task-specific feedback in the form of higher
order meta information to explain its own status in the cur-
rent task space and update the parameter θr of the mapping
relation r

θr ← ̂θmeta − β �θ

|Fr|
∑

i=1

Lrθ

(

Ar) (3)

where the step size β is fixed as the hyperparameters. |Fr| is
the number of incomplete triples in the Ar, i.e., the number
of VNFs to be deployed in task Tr. L(∗) is the loss function
evaluated on the VNF deployment strategy of Tr, implying
that the parameters θ in deployment strategy are trained by
optimizing the performance of each VNF deployment in Tr.

Moreover, in order to train deployment learner to learn how
to get the service-tailored mapping relation rr, the task loss
gradient, i.e., �θLrθ (A

r), is used as the meta gradient to guide
the learning of deployment learner. Accordingly, the updated
meta mapping relation rθ will be obtained by the task objective
and guided by the representation loss of entities in Ar

min
θ

L(

Tr) = min
θ

|Fr|
∑

i=1

Lrθ

(

Ar) (4)

where L(Ar) is the sum of query loss during training.
Eventually, we can obtain the deployment solution for Tr

with the service-tailored rr by: ? = h+ rr.

IV. PROPOSED SERVICE-TAILORED VNF DEPLOYMENT

FRAMEWORK STAILNET

In this section, we introduce each module of our StailNet
in detail.

A. Knowledge Extraction Module

Same with previous intelligent deployment algorithms, we
first convert the information of NS tasks and physical network
to uniformly structured data. However, to make those intelli-
gent algorithms, originally developed for Euclidean structure
data, applicable to solve graph-like problems, almost all cur-
rent studies have used the form of resource matrices (e.g.,
adjacency matrix and edge table) to characterize the network
information, which poses a significant limitation: formulating
mapping relation r involves two different dimensional spaces,
the slicing task and the physical network, so resource matrix-
based vector calculation is always complex and have unavoid-
able biases. So the matrix-based representation approach is not
conducive for us to explore the learning of meta-relations.

To reduce the knowledge extraction bias and establish the
relationship between the data of different dimension spaces,
instead of using the traditional resource matrix-based network
representation method, we represent the network in a semi-
structured way with flexible patterns—constructing knowledge
graphs by extracting knowledge in the slice to be deployed and
the physical network, marked as KGf and KGs, respectively.
The semi-structured information of them is given in Table II.
Notably, we mainly focus on the relations between nodes and
links in the networks for converting the network data to a
set of knowledge triples (eh, s, et), where eh and et represent
two different vertices or links in a knowledge graph, and s
represents a kind of structure relation between eh and et.

In addition, in this work, we use 	 to denote the set
of golden triplets. Hence, we use (eh, s, et) ∈ 	 to state
“(eh, s, et) is correct” and (eh, s, et) ∈ 	̄ to state “(eh, s, et)
is incorrect.” We use lowercase bold-face letters to denote the
vector representations of the corresponding terms, e.g., (eh, s,
and et) denotes the vector representation of triple (eh, s, et).
We use capital bold-face letters to denote matrices, and we use
superscripts to denote different knowledge bases. For exam-
ple, E(1) denotes the representation matrix for entities in K1

in which each row is an entity vector e(1).
Next, after extracting information by knowledge graph,

we embed information from these two different dimensional
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TABLE II
STRUCTURED INFORMATION OF KNOWLEDGE GRAPH KGf AND KGs

Fig. 2. Knowledge graph embedding.

spaces into the same vector space based on a widely used
knowledge graph representation learning method TransH [28].
As illustrated in Fig. 2, for each structure relation s, we first
define a hyperplane wr (the normal vector). Then, we project
the embedding eh and et to the hyperplane wr, where the pro-
jections are denoted as eh⊥ and et⊥, respectively. Accordingly,
the s-specific translation vector dr will be positioned in
hyperplane wr rather than in the same space of entity embed-
ding, so that we can represent reflexive/one-to-many/many-to-
one/many-to-many relationships in the s-specific hyperplane.
For example, as shown in Fig. 2, there is a head entity eh1
identified in red is projected on the hyperplane wr, marked as
eh1⊥, if it represents a physical node in the physical network,
the tail entities et1 and et2 represented in yellow and green
represent the two neighboring nodes of this physical node,
then the blue dashed lines dr1 and dr2 represent the projection
of adjN between them on wr, of course we can also replace
the physical nodes in this example with physical links, virtual
links, and VNFs. Thus, for a triple (eh, s, et) ∈ 	, et⊥ can be
deduced by eh⊥ and dr as

et⊥ = eh⊥ + dr. (5)

Furthermore, we define a scoring function f (eh, s, et) to
measure the plausibility of the triple (eh, s, et), which is
defined as

f (eh, s, et) = ‖eh⊥ + dr − et⊥‖2 (6)

where ‖ ∗ ‖2 is the L2 norm of a vector. By restricting
‖wr‖2 = 1, we can easy to get eh⊥ = eh − w�r ehwr,

Algorithm 1: Training of Knowledge Graph Embedding

Input: KGS, average number of tail entities per head
entity tph, the average number of head entities per
tail entity hpt, margin γ , vector dimensionality k,
learning rate α, iteration times epochnum, batch
size b

Output: Ves= { entity vectors n, l, relation vector dr,
normal vector wr }

1 extract numt positive triples;
2 conduct numt negative triples by random visit a positive

triple and corrupt it by replacing the head with
probability tph

tph+hpt , replacing the tail with probability
hpt

tph+hpt training;
3 randomly generate Ves={n, l, dr, wr };
4 while epoch < epochnum do
5 Load training set S=positive triples, negative triples;
6 while batch ≤ ⌈ numt

b

⌉

do
7 sample b triples from the remaining S, and

remove them from S;
8 update Ves = Ves −

α× 1
b

∑

(eh,r,et)�[f (eh, r, et)− f (eh′, r, et′)+γ ]+;
9 Ves = Ves‖Ves‖ ;

10 epoch = epoch+ 1, batch = batch+ 1

11 return Ves;

et⊥ = et−w�r etwr. Eventually, the scoring function f (eh, s, et)
is

f (eh, s, et) =
∥

∥

∥

(

eh− w�r ehwr

)

+ dr −
(

et− w�r etwr

)∥

∥

∥

2
.

(7)

From this, the embedding training process of KGs is shown
in Algorithm 1 and since the relationships we consider are the
same, we can implement the KGf embedding by replacing the
data set of KGs in the input, which will not be repeated here.
The core concept of it is based on the following steps.

At the first step, in order to keep the representation bias
under control, we not only add the gold knowledge directly
extracted from KGs into the training set but also generate
some negative triplets by replacing the head or tail entities
in the golden triples with probabilities (tph/[tph+ hpt]) and
(hpt/[tph+ hpt]), respectively. We label the negative triples
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as (eh′, s, et) \ (eh, s, et′) and insert them into the training set
(lines 1–3 of the algorithm).

For a positive triple, we expect f (eh, r, et) ≈ 0, while for
a negative triplet, we expect f (eh, r, et) � 0. So, after we
load training set S, which includes both the positive triples
and negative triples (line 5 in Algorithm 1), we use the
following margin-based ranking loss to train this model by
discriminating between positive triples and negative triples:

L =
∑

(eh,s,et)∈	

∑

(eh′,s,et′)∈	̄

[

f (eh, s, et)+ γ − f
(

eh′, s, et′
)]

+

(8)

where [x]+ = max(0, x), γ is the margin separating positive
and negative triplets, which is a hyperparameter.

Then, as shown in lines 4–10, we adopt stochastic gradient
descent to minimize L with the following constraints:

|w�r dr|
‖dr‖2 = 0 ∀r (9)

‖wr‖2 = 1 ∀r (10)

where (9) guarantees the translation vector dr is in the
hyperplane.

Finally, as the gradient is computed and the model param-
eters are updated after a mini-batch. We can obtain the vector
representations of the nodes, links, and their relations.

B. Meta Training

To extract the meta gradient from observed example tasks
in M on the fly, the meta learning phase is designed to learn
the initial mapping relation r

̂θmeta
based on experience, which

can be viewed from a feature learning standpoint as build-
ing an internal representation of the deployment instances.
Algorithm 2 shows the pseudocode of this process imple-
mented by the meta learner, the agent of this learning process.

Computationally, we first sample a task Te from M and
extract entity-pair specific relation r via an L-layers fully
connected neural network

x0 = hvi ⊕ tsi

xl = σ
(

Wlxl−1 + bl
)

r(hvi,tsi) =Wlxl−1 + bl (11)

where hvi and tsi are embeddings of head entity hvi ∈ VNF and
tail entity tsi ∈ N in Te with dimension k, respectively, which
have been vectorized in knowledge extraction module. L is the
number of layers in this neural network and l ∈ {1, . . . , L−1}.
Wl and bl are weights and biases in layer l. y⊕z represents the
concatenation of vectors y and z. And we use LeakyReLU for
activation σ . Notably, for ease of presentation, all parameters
related to r will be denoted by θ in the following.

Then, for a one-shot task Te, meta learner can directly
obtain the mapping relation of it, represented by rk = r(hvi,tsi).
While for an N-shot task (i.e., there are more than one VNF to
be deployed in this task), meta learner generates the mapping
relation re via averaging all r(hvi,tsi), which can be calculated
as

re =
∑N

i=1 r(hvi,hsi)

N
. (12)

Algorithm 2: Meta Training

Input: hvi; tsi; γ ; Learning rate ϕ

Output: rr
θ

1 Sample a Te form M;
2 Compute re

θ by Eq. (11);
3 for all Tk in M do
4 Compute �k

θ (T
k) by Eq. (13);

5 Evaluate �rk
θ
�k
θ (T

k) (i.e., representaion meta

gradient);
6 update θ ′k by Eq. (15);

7 Compute ̂θmeta by Eq. (2);
8 return ̂θmeta;

Next, to make re more representative for different tasks,
meta learner further optimizes it by a meta-training process,
where a score function is defined to evaluate the truth value
of entity pairs for the current task by applying the key idea of
knowledge graph embedding methods [29]. And we calculate
the score for each entity pair (hvi, tsi) in Tk ∈ M as follows:

S(hvi, tsi) =
∥

∥

∥hvi + rk
θ − tsi

∥

∥

∥. (13)

Meanwhile, a representation loss function �θ (Tk) is defined
to acquire the meta gradient in the task-agnostic meta space
so as to update the parameters of rθ through per task in M

�θ

(

Tk
)

=
∑

(hvi,tsi)∈Tk

[

γl + S(hvi, tsi)− S
(

hvi, t′si

)]

+ (14)

θr ← θe − ϕ �rk
θ
�k
θ

(

Tk
)

(15)

where �θ (Tk) should be small which represents the task Tk
θ

is properly represented by the specific rk, �rk
θ
�k
θ (T

k) is the
representation loss gradient, which acts as the meta gradient
in this meta learning phase to explain how should the mapping
relation r be updated.

Eventually, as shown in lines 7–10 of Algorithm 2, by
observing the representation loss gradient of each sampled Tk

in M, meta information can be summarized into the parameters
of the initial mapping relation r

̂θmeta
as shown in (2) (̂θmeta),

and the mapping relation vector can have a rapid update and
converge as (1) by minimizing

∑

Tk∈M �θ (Tk).

C. Adaptation

Although in the meta-training phase, we have got the
abstraction of the initial mapping relation r

̂θmeta
in the task-

agnostic meta space, we are still some distance from “service-
tailored deployment,” as the real-time interaction information
between the newly arrived slicing task and the physical
network has not yet been passed to the learner. Therefore,
for a newly arrived task Tr with an adaptation set Ar, in order
to feedback higher order meta information to meta learner to
quickly locate its status and obtain the fine-tuned rθ , accord-
ing to the dependencies between head entities (i.e., VNFs)
in the adoption set Ar, we formulate the prediction process of
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tail entities (i.e., physical nodes that host VNFs) in the adapta-
tion set Ar as a discrete-time finite horizon discounted Markov
decision process (MDP), which can be denoted by

st+1 = f rr
(st, at) (16)

where st ∈ R
A are the states and at ∈ R

KGs are the actions.
The dynamics f Tr

is parameterized by the mapping relation
rr
θ . At each step, the deployment learner takes an action a ∈ A

according to the policy f Tr
. Then, the state st will transit to

the next state st+1 ∈ S and an immediate reward RWr(at, st)

will be generated, which can be formulated over a finite time-
horizon as

RWr(a, s) = E

⎡

⎣

|Ar |
∑

t=0

|RWr(at, st)|s = s0, a = a0, st = rθ (at)

⎤

⎦.

(17)

Accordingly, in our scenario, we define the three compo-
nents of MDP in the task space as follows.

1) State Definition: In the tth time, we define the state
st ∈ S as the current state of server nodes, which can be
described as

st =
(

et1, et2, . . . , et|N|
)

(18)

where st indicates the environmental state at time t that needs
to be fed back to the meta learner. And eti is the state
vector of the server node, which consists of the structural
information embedded by the knowledge extraction module
and the information about the number of resources available
to the physical node at the current moment.

2) Action: The deployment learner has to decide how to
deploy the slicing task Tr. It includes two steps: 1© predicts
tail entities in the adaptation set Ar to assign server nodes to
VNFs of Tr and 2© chooses suitable links to connect. As the
knowledge of the physical network has been embedded in the
same vector space as the slicing task. The deployment learner
executes an action a ∈ (NI, LI) at each step, where NI and
LI are the set of server indexes and the set of physical link
indexes, respectively.

3) Reward Function: To obtain the deployment solution
adapted to the newly arrived task quickly and cost-efficiently,
in the adaptation phase, we perform meta-optimization from
the initial mapping relation r

̂θmeta
to fine-tune the parameters

of it and we formulate the reward function as

RW = λ ∗
∑

lv∈Lv

Dbw(lv)

x ∗ Cbw
(

rθ

(

ltv
)) + μ ∗ ω

(

τ ;Ar, M
)

�θ

(

Tr)

− ν ∗ (

1−̂ESS
)∥

∥θ −̂θmeta
∥

∥

2 (19)

where λ, μ, and ν are the custom constant, namely, the
reward coefficient. The first term computes the off-policy
updates on the rr

θ of new task (data in adaptation set Ar)

to ensure the performance, where x ∗ Cbw(rθ (ltv)) represents
the bandwidth resources required to deploy lv. The second
term performs the parameter updates on old data (i.e., data
in meta learning set M) to locate the initial meta mapping
relation. ω(∗) is the propensity score, a simple logistic clas-
sifier used by Fujimoto et al. [30], which represents the

Algorithm 3: Adaptation

Input: hvi; tsi;λ, μ and ν; Number of epochs numEpoch;
Learning rate α

Output: rr
θ

1 while t ≤ T do
2 for each Tr newly arrived do
3 while iteration < numEpoch do
4 for VNF ∈ Ar do
5 extracted the real-time state matrix st by

knowledge extraction module;
6 calculate the probability distribution psi

by Eq. (21);
7 Take an action at based on psi ;
8 Execute action at and receive a new state

st + 1:st = rθ (at);
9 Storage the immediate reward RW(at, st);

10 if isMapped(∀VNF ∈ Tr) then
11 Apply breadth-first LinkMap(Tr);
12 if isMapped(∀VNF ∈ TR,∀lv ∈ Tk) then
13 Compute loss LTr (rθ ) and task loss

gradient (i.e., task meta gradient) as
�θLTr (rθ );

14 else
15 clear the stacked gradients;

16 ++iteration;

17 apply task loss gradients to θr by Eq. (3);

18 Update rr
θ by Eq. (4);

19 compute tsi = hvi + rr
θ ;

20 return rr
θ ;

similarity between the data in Ar and the data in the meta-
training set M. The third term is an automatically adapting
proximal term that prevents degradation of the policy dur-
ing adaptation, where ̂ESS is the effective sample size [31]
between Ar and M that is a measure of the similarly of
the new task with the meta-training tasks, which can be
calculated by a heuristics Monte Carlo method as: ̂ESS =
(1/|Ar|)([(∑|Ar|

i=1ω(τi))
2]/[

∑|Ar|
i=1ω(τi)

2]) ∈ [0, 1], where
ω(τ) = e−ω∗�τ .

To this end, to deploy the newly arrived slicing task Tr

cost-efficiently. We set our training objective based on (4)

min
θ

Lrθ

(

Ar) =
{−RW(Tr), The solution is feasible

+∞, Otherwise.

(20)

And we fine-tune r
̂θmeta

for several epochs to make it adapt-
able to the newly arrived slicing deployment task Tr as shown
in Algorithm 3. In each iteration, for each hvi, i.e., the vi,
the real-time state matrix is first extracted from the sub-
strate network via the knowledge extraction module (line 5),
then the deployment learner calculates the selected probabil-
ity for each physical node, in which the probability psi is
computed as
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psi =
{

S(hvi ,tsi)
∑

si
S(hvi ,tsi)

, D(vi) < C
(

nsi

)

0, D(vi) < Cap
(

nsi

)
(21)

and we choose the one with the highest probability to take
action as well as calculate immediate reward (lines 6–8). We
repeat this process until all the VNFs in Tk are assigned and
then process link mapping by applying a breadth-first search
to find the shortest paths (lines 10–15). At the end state, the
deployment learner calculates the total RW and Lrθ (A

r). Then,
we defined a tensor for the gradient of every step using the
stochastic gradient descent optimizer to obtain the task loss
gradient �θLrθ (A

r) to minimize Lrθ (A
r). After several epochs,

we can stack a batch of gradients, then we apply it to update
parameters of rθ automatically as (3). In the end, the algo-
rithm outputs the final solution of the slicing task or returns
information about failing in deployment.

V. EVALUATION

In this section, to demonstrate the effectiveness of our
proposed VNF deployment method, we simulate the experi-
ments on an online NS deployment environment and deeply
analyze the experiment results. The experiment is conducted
on a CEC physical network topology with 161 nodes (includ-
ing 101 servers and 60 switches) generated by the GT-ITM1

tool, where Nc = 53 and Ne = 48. We have used the global-
wide backbone, transit network Tinet as the core network
topology, where all nodes of the backbone network have equal,
but finite amounts of resource capacities to host VNFs. And
we have introduced three cloud data centers (DCs) (connected
to New York, Prague, and Frankfurt) with a fat-tree (k = 4)
structure in the Tinet topology to simulate the edge network.
Same as [12], we configure the core cloud servers in core
network with 30–40 units of CPU resource and 30–40 units
of Memory resource, while edge cloud servers in DCs with
10–20 units and 10–20 units. The bandwidth resource between
any server and ToR switch is set to 60, the delay of them is 3,
the bandwidth of each physical link between ToR and aggrega-
tion switch is set to 80, the delay 2, and between aggregation
and core switch is set to 1000, the delay is 1. The bandwidth
resource between core cloud servers is set to 100–150, and the
delay is 1–10. The constant value for nodes and links energy
consumption is set to Pl = 150 (W), Pb = 150 (W), and Pn

= 15 (W).

A. Knowledge Extraction Results

We first extract the key information of the physical network
topology according to Table II and transform it into 1959 enti-
ties and 7740 golden triplets. And then, in the knowledge
extraction module, we set dimension k = 100, margin γ = 1,
batch size b = 5, and epoch = 100 to train our embedding
model for transforming the unstructured network information
to embedding vectors. Fig. 3 shows the convergence of embed-
ding loss function values under different learning rates α and
epochs. As the epoch gets bigger, all loss functions can be
seen to sharply drop first and subsequently fluctuate around

1GT-ITM. https://www.cc.gatech.edu/projects/gtitm/.

Fig. 3. Loss functions with different α.

TABLE III
PART OF KNOWLEDGE EXTRACTION RESULTS

various constants. Larger α speeds up convergence, how-
ever if is more than a certain value, such in this example
α = 0.1 and α = 0.2, the loss curves converge to larger
values and the corresponding representations are underfitting.
Hence, we set α = 0.05 and with such parameters setting,
our knowledge extraction module can output the vectors of
physical nodes and physical links. We show some of them
in Table III.

We also embed the key information of the slice to be
deployed into the same vector space dynamically. Furthermore,
the slicing tasks are generated in the same way as stated
in [5]. Each slice consists of different numbers of VNFs from
3 to 8 according to the uniform distribution. Table III shows
the embedding results for a simple slicing task example with
four VNFs and four virtual links that connect them in turn.
As with the physical network, we first transformed it into
8 entities and 12 golden triples, then we call Algorithm 1
to generate negative samples based on these golden triples
and constructed the training set consisting of both posi-
tive and negative samples, finally, the knowledge extrac-
tion module outputs the vectors of these VNFs and virtual
links.

And the embedding results of relations adjN and adjL are

adjN = [−0.11773149, 0.1236721, . . . ,−0.064747885]

adjL = [0.49432778,−1.6670148, . . . , 1.825491]
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TABLE IV
COMPARING STAILNET TO GRC, DRL, AND METAP

B. VNF Deployment Results

Experimental Setup: Our simulation experiments are exe-
cuted on a computer with 2.40-GHz Intel Core i5 9300h CPU
and 16-GB RAM. In the meta-training phase, M includes four
example tasks that are randomly selected from the real-world
traces from Alibaba [32]. In the adaptation phase, learning
rate α = 0.05, numEpoch = 10, and batch_size = 10. The
whole model architecture is built with Tensorflow and Adam
optimizer is employed to update the parameters of neural
networks. To evaluate the performance of StailNet in online
VNF deployment, there are 2000 slicing tasks arrive at the
system sequentially according to a Poisson process with an
average arriving rate of 40 per 1000 time units. Each slice
has a lifetime exponentially distributed with an average of 40.
For intuitively showing the experiment results, we average the
results in all figures (i.e., from Figs. 4 to 10). The experiments
set the data collection point at the beginning of the time win-
dow, and one time window is equal to 5000 time units, the
experimental simulation is executed within ten time windows.
In addition, the virtual links between VNFs obey a random dis-
tribution of [10, 20] and [20, 50] for the maximum data rate
and delay requirements, respectively. The main parameters of
slicing task are the same as discussed in [5], and in order to
verify the adaptability of the algorithm to handle a variety of
demanding tasks, we scaled up the parameters of VNFs by a
factor of two.

Baseline Algorithms: We first use a classical algorithm, the
nonrecursive greedy resource allocation (GRA) algorithm [33],
as the baseline, which deploys VNFs at the nodes with the
most sufficient resources. To evaluate the performance of mod-
ules in StailNet, we compare it with DRL [24] and MetaP,
where DRL is a typical deep reinforcement learning-based
deployment algorithm with the goal of maximizing the long-
term average revenue and MetaP is a comparison experiment
designed in this article to verify the effectiveness of learn-
ers in StailNet. Table IV provides a high-level comparison of
StailNet and those methods, listing their strategies.

Performance Evaluation: Fig. 4 reveals the results of the
average acceptance ratio for the ten time windows. As plotted,
StailNet is able to accept almost all slicing tasks that arrive
at the system, achieving a significant advantage. When the
system reaches a steady state, the acceptance ratio of GRC and
DRL is around 60% and 85%. This benefits from the deploy-
ment learner of StailNet, which can accurately extract the
features of a new task using knowledge extraction module, and
then fine-tune the empirically obtained r

̂θmeta
to get the service-

tailored mapping relation rθ . So we can derive the efficient
deployment solution based on rθ . Our comparative experiment

Fig. 4. Average acceptance ratio.

Fig. 5. Average number of opening nodes.

MetaP also demonstrates the effectiveness of the deployment
learner designed for the adaptation phase. As shown in Fig. 4,
metaP achieves an approximate performance in the average
acceptance ratio with DRL, which is also based on a constant
deployment model, due to the lack of the adaptation phase. In
addition, this result is also attributed to the fact that the service-
tailored deployment model of StailNet is more adapted to the
complex topological environment of B5G networks. GRC and
DRL do not take into account the tendency of different task
deployments when facing a B5G network with core and edge
servers, so some slicing tasks may be deployed on inappropri-
ate servers, and as network resources are continuously opened
and occupied the average acceptance ratio may be decreased.

We also give a cost analysis to highlight the superiority of
StailNet. Fig. 5 reveals the variation of the average node open-
ings over ten time windows. The average number of opening
nodes directly affects the final average cost and energy con-
sumption, while StailNet always maintains the least number
of openings (≈ 50), indicating that our proposed algorithm
achieves good performance in terms of resource utilization. As
shown in Fig. 6, when the system reaches a steady state, the
average number of opening links of the StailNet is less than
100, while the number of GRC and DRL is about 230 and
140, respectively, which are much higher than StailNet. This
indirectly reflects that StailNet has the ability to learn what
are the actions that most affect the deployment performance
with a small amount of data, so it is able to reduce cost
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Fig. 6. Average number of opening links.

Fig. 7. Average cost.

Fig. 8. Average energy.

Fig. 9. Average revenue.

and energy by choosing fewer hops to connect nodes. As a
result, StailNet always minimizes cost and energy consump-
tion throughout the deployment, as shown in Figs. 7 and 8,
respectively. And as shown in Fig. 7, StailNet achieves about
2.1× and 1.8× average revenue reward than the baseline
algorithms, which coincides with the results of acceptance
ratio and cost, validating the benefits of service-tailored VNF
deployment.

Fig. 10 depicts the results of average execution time. As
plotted, the execution time for StailNet to deploy a slicing
task is slightly higher than that of GRC and DRL. However,
there are some facts that cannot be ignored. First, it can be
seen from Figs. 4–9 that GRC, as a nonintelligent algorithm
performs much worse than other intelligent algorithms. And it
is obviously unfair to compare the running time of the GRC
without the training process with other intelligent algorithms.

Fig. 10. Average execution time.

As for DRL, DRL is a typical deep reinforcement learning-
based deployment algorithm with the goal of maximizing the
long-term average revenue. Because the execution time of an
online task generally counts the time from the system receiving
a newly arrived slicing task to the completion of deployment.
Therefore, the execution time of DRL only counts the time
spent in the online deployment of a single slice during the
testing phase, and the time spent in its offline training is not
reflected in the plot. As we all know, the execution time of
intelligent algorithms is positively correlated with the size
of the training set, the number of iterations, and the batch
size of the training process. According to the data provided by
DRL, its training set contains 1000 slices with iteration = 10
and batch_size = 100, and the training time is 81.62. However,
our method contains only four example tasks in the training set
with batch_size = 10, thus, although the training and testing
are integrated, it still achieves a similar average execution time
as DRL, and performs much better. This also demonstrates the
efficiency of our approach in terms of learning capability.

VI. CONCLUSION

In this article, we propose a meta relational learning frame-
work, abbreviated as StailNet. With the goal of gaining the
ability of learning and adapting new tasks quickly and cost
effectively, we focus on how to “learn” to train a good
strategy for different tasks, rather than focusing on how to
train a good strategy for individual task as traditional goal-
driven algorithms do. Simulation results demonstrate that our
StailNet outperforms the selected representative algorithms in
the literature.

In future work, we will extract more features for slicing
tasks and physical B5G networks and verify the effective-
ness of each feature. Meanwhile, we will make efforts to
improve the learning efficiency of learners of StailNet and
further reduce the cost.
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